K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

A = 4x2 + 4x + 11

= 4( x2 + x + 1/4 ) + 10

= 4( x + 1/2 )2 + 10

4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MinA = 10 <=> x = -1/2

31 tháng 8 2020

\(A=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+10\ge10\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=10\)\(\Leftrightarrow x=\frac{-1}{2}\)

17 tháng 8 2020

a. Vì \(\left|3x-2\right|\ge0\forall x\)

\(\Rightarrow2\left|3x-2\right|-1\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow2\left|3x-2\right|=0\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy Amin = - 1 <=> x = 2/3

b. Vì \(\left|x-4x\right|\ge0\forall x\)

\(\Rightarrow5\left|1-4x\right|-1\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow5\left|1-4x\right|=0\Leftrightarrow1-4x=0\Leftrightarrow x=\frac{1}{4}\)

Vậy Bmin = - 1 <=> x = 1/4

c. Vì \(x^2\ge0\forall x;\left|y-2\right|\ge0\forall y\)

\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy Cmin = - 1 <=> x = 0 ; y = 2

17 tháng 8 2020

d. Vì \(\left|x\right|\ge0\forall x\)\(\Rightarrow x+\left|x\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x bé hơn hoặc bằng 0

Vậy Dmin = 0 <=> x bé hơn hoặc bằng 0

e.

+) Nếu x > hoặc bằng 7

=> E = | x - 7 | + 6 - x = x - 7 + 6 - x = -1

Vậy x > hoặc bằng 7 thì E có một giá trị duy nhất là -1

+) Nếu 0 < x < 7

=> E = | x - 7 | + 6 - x = - x + 7 + 6 - x = - 2x + 13 ( nhỏ nhất bằng 1 <=> x = 6 )

+) Nếu x bé hơn hoặc bằng 0

=> E = | x - 7 | + 6 - x = - x + 7 + 6 + x = 13  

Vậy Emin = -1 <=> x lớn hơn hoặc bằng 7

15 tháng 7 2019

\(B=x^2-x+2=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy \(B_{min}=\frac{7}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)

15 tháng 7 2019

\(A=2x^2-3x+6=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)

\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{39}{16}\right]\ge\frac{39}{8}\)

Vậy \(A_{min}=\frac{39}{8}\Leftrightarrow x=\frac{3}{4}\)

16 tháng 7 2019

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:

a. x2 - 2xy + 2y2 + 2y +1

= (x2 - 2xy + y2) +( y + 2y +1)

= (x-y)2 + (y+1)2

b. 4x- 12x - y+ 2y + 8

= (4x2 - 12x + 9 ) - (y2 - 2y  +1 )

= (2x-3)2 - (y-1)2

27 tháng 7 2019

Ta có: B = -4x2 + 3x + 1 = -4(x2 - 3/4x + 9/64) + 7/16 = -4(x - 3/8)2 + 7/16

Ta luôn có: -4(x - 3/8)2 \(\le\)\(\forall\)x

=> -4(x - 3/8)2  + 7/16 \(\le\)7/16 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/8 = 0 <=> x = 3/8

Vậy Max của B = 7/16 tại x = 3/8

Ta có: C = -5x2 - 2xy - y2 + 4x + 7 = -(4x2 - 4x + 1) - (x2 + 2xy + y2) + 8 = -(2x - 1)2 - (x + y)2 + 8

Ta luôn có: -(2x - 1)2 \(\le\)0\(\forall\)x

 -(x + y)2 \(\le\)\(\forall\)x;y

=> -(2x - 1)2 - (x + y)2 + 8 \(\le\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\x+y=0\end{cases}}\) <=> \(\hept{\begin{cases}2x=1\\x=-y\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\)

Vậy Max của C là 8 tại x = 1/2 và y = -1/2

10 tháng 11 2019

vì \(\left(2x-1\right)^2\ge0\forall x\in Q\)

=>\(\left(2x+1\right)^2+12\ge12\)

dấu =  xảy ra <=>

2x+1=0

2x=1

x=\(\frac{1}{2}\)

vậy gtnn của bt A tại X = 1/2

10 tháng 11 2019

\(A=\left(2x-1\right)^2+12\ge0\)

\(A=\left(2x-1\right)^2+12\ge12\)

\(\Leftrightarrow A=12\)

Dấu "=" xảy ra: \(\left(2x-1\right)^2=0\)

                           \(2x-1=0\)

                            \(x=\frac{1}{2}\)

Ta có :

\(S=\frac{4x^2-2}{2x^2+1}=\frac{4x^2+2-4}{2x^2+1}=\frac{2.\left(2x^2+1\right)-4}{2x^2+1}=2-\frac{4}{2x^2+1}\)

Để S nhận giá trị nhỏ nhất thì \(\frac{4}{2x^2+1}\) lớn khi 2x2 + 1 nhỏ nhất

Mà 2x2 ≥ 0 ∀ x => 2x2 + 1 ≥ 1 ∀ x

=> \(S=2-\frac{4}{2x^2+1}\le\frac{4}{1}=-2\)

Dấu "=" xảy ra <=> 2x2 = 0 <=> x2 = 0 <=> x = 0

(2x-3)(x+1)(4x^2+5)=0

TH1                            TH2                     TH3

2x-3=0                        x+1=0                  4x^2+5=0

2x=3                           x= -1                    4x^2= -5

x=3/2                                                       x^2= -5/4

                                                                x vô nghiệm

Thấy \(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+5>0\)

Để (2x-3)(x+1)(4x2+5)=0

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}}\)

Vậy .............