Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+...+5^{2015}\)
\(5A=5.\left(1+5+5^2+5^3+...+5^{2015}\right)\)
\(=5+5^2+5^3+5^4+...+5^{2016}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{2016}\right)-\left(1+5+5^2+5^3+...+5^{2015}\right)\)
\(4A=5^{2016}-1\)
\(A=\frac{5^{2016}-1}{4}\)
a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)
\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)
\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)
\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)
b,\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)
\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)
\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)
\(=3^n\cdot9+1-2^n\cdot4+1\)
\(=3^n\cdot10-2^n\cdot5\)
Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)
\(3^n\cdot10⋮10\)
Vậy : ....
\(\left(\frac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2\)
\(=1-\left(4\right)^2\)
\(=1-16=-15\)
TA CÓ:
\(A=1+5+5^2+....+5^{2015}\)
\(5A=5+5^2+5^3+...+5^{2016}\)
\(5A-A=\left(5+5^2+5^3+...+5^{2016}\right)-\left(1+5+5^2+...+5^{2015}\right)\)
\(4A=5^{2016}-1\)
\(A=\frac{5^{2016}-1}{4}\)
Vậy A=...