Cho tam giác ABC,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

A E C H N O M B P I O K

a) Qua P vé đường thẳng song song với BC cắt AM,AN, AC lần lượt tại I;K;E. 

Gọi H là giao của PN và AC

Chứng minh I là trung điểm PE

\(\Delta\)APH cân tại A. IN là đường trung bình \(\Delta\)PEH

Tứ giác IECN là hình bình hành. Vì vậy NC=IE=PI

Ta có: \(\frac{NQ}{PQ}=\frac{MN}{PI}=\frac{MN}{NC}=\frac{MI}{AI}=\frac{NK}{AK}\)

=> QK//AP

Nên KQ _|_ OP. \(\Delta\)OPK có PN,KQ là 2 đường chéo cắt nhau tại Q

Do vậy có: QO_|_ PK. Vậy QO _|_ BC (đpcm)

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

11 tháng 7 2018

a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC

=> góc EAM = góc FAM

=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)

=> EA=FA và EM = FM (1)

TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)

Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)

Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)

11 tháng 7 2018

A E B F C D M

a, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (gt)

góc B = góc C (gt)

=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

b, Xét t/g AEM và t/g AFM có:

EM = FM (t/g BEM = t/g CFM)

góc AEM = góc AFM = 90 độ (gt)

AM chung

=> t/g AEM = t/ AFM (c.g.c)

=> AE = AF

=> tg/ AEF cân tại A

Mà AM là tia phân giác của t/g AEF

=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF 

c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC

=> AM cũng là đường trung trực của BC (1)

=> góc AMB = 90 độ

Xét t/g DMB và t/g DMC có:

MB = MC (gt)

góc DMB = góc DMC = 90 độ (cmt)

DM chung

=> t/g DMB = t/g DMC (c.g.c)

=> DB = DC => D thuộc trung trực của BC

Mà MB = MC => M thuộc trung trực của BC

=> DM là trung trực của BC (2)

Từ (1) và (2) => A,D,M thẳng hàng 

19 tháng 2 2020

Chuẩn

là sao bạn phương linh