K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4. Đặt  t= a^2 +a

Suy ra t^2 +4t - 12 = (t-2)(t+6) = (a^2+a-2) (a^2+a +6) = (a-1)(a+2)(a^2+a+6)

5. Đặt t = x^2 +x+1

Ta có: t(t+1) -12

= t^2 +t-12

= (t-3)(t+4)

= ( x^2 +x -2 ) (x^2+x+5)

 = (x-1) ( x+2) (x^2+x+5)

6. x^8 + x^7 + x^6 - x^7- x^6 - x^5 + x^5+ x^4 + x^3- x^4- x^3- x^2 + x^2 + x +1

= (x^2 +x+1) ( x^6 - x^5 +x^3 -x^2 +1)

7.  x^10 + x^9 +x^8 - x^9- x^8- x^7 +x^7+x^6+x^5 - x^6-x^5 - x^4 + x^5+ x^4 + x^3 - x^3 - x^2 - x + x^2 + x +1

=  (x^2 + x + 1) ( x^8 -x^7 + x^5 - x^4 + x^3 -x + 1)

         a3 - 7a - 6 

= a3 - a - 6a - 6 

= a ( a2 - 1 ) - 6 ( a + 1 )

= a ( a - 1 ) ( a + 1 ) - 6 ( a + 1 )

= ( a + 1 ) [ ( a ( a - 1 ) - 6 ]

= ( a + 1 ) ( a2 - a - 6  )

= ( a + 1 ) ( a2 + 2a - 3a - 6 )

= ( a + 1 ) ( a + 2 ) ( a - 3 )

8 tháng 11 2017

2\

a3+4a2-7a-10

= a3-2a2+6a2-12a+5a-10

=a2(a-2) +6a(a-2) +5(a-2)

= (a-2)(a2+6a+5)

= (a-2)(a+1)(a+5)

4\

(a2+a)2+4(a2+a)-12

= (a2+a)2+4(a2+a)+4-16

= (a2+a+2)2-16

= (a2+a+6)(a2+a-2)

5/

(x2+x+1)(x2+x+2)-12

đặt x2+x+1=a

⇒ a(a+1)-12

= a2+a-12

= a2-3a+4a-12

= a(a-3)+4(a-3)

= (a-3)(a+4)

⇒ (x2+x-2)(x2+x+5)

6\

x8+x+1

= x8+x7+x6-x7-x6-x5+x5+x4+x3-x4-x3-x2+x2+x+1

= x6(x2+x+1) - x5(x2+x+1) +x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)

= (x2+x+1)(x6-x5+x3+x2+1)

7\

x10+x5+1

= x10+x9+x8-x9-x8-x7+x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1

= x8(x2+x+1)-x7(x2+x+1)+x5(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)

= (x2+x+1)(x8-x7+x5-x4+x3-x+1)

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

1.

$a^3-7a-6=a^3-a-(6a+6)=a(a^2-1)-6(a+1)$

$=a(a-1)(a+1)-6(a+1)=(a+1)(a^2-a-6)$

$=(a+1)(a^2+2a-3a-6)$

$=(a+1)[a(a+2)-3(a+2)]=(a+1)(a+2)(a-3)$

2.

\(a^3+4a^2-7a-10=a^3+a^2+(3a^2+3a)-(10a+10)\)

\(=a^2(a+1)+3a(a+1)-10(a+1)=(a+1)(a^2+3a-10)\)

\(=(a+1)[a(a-2)+5(a-2)]=(a+1)(a-2)(a+5)\)

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

3.

\(a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc\)

\(=a(b^2+c^2+2bc)+b(c^2+a^2+2ac)+c(a^2+b^2+2ab)-4abc\)

\(=ab(a+b)+bc(b+c)+ca(c+a)+2abc\)

\(=ab(a+b+c)+bc(a+b+c)+ac(a+c)\)

\(=(a+b+c)(ab+bc)+ac(a+c)=(ab+b^2+bc)(a+c)+ac(a+c)\)

\(=(a+c)(ab+b^2+bc+ac)=(a+c)(a+b)(b+c)\)

 

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

2
5 tháng 7 2018

Bài 2:

a)  \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

b)  \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)

c)  \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề

      còn mấy câu nữa bn đăng lại nhé

5 tháng 7 2018

Bài 1: 

a)  \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

b)   \(x^4+4x^2-5=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

c)  \(x^3-19x-30=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

1
15 tháng 7 2018

a) Ta có: \(x^2-x-6\)

\(=x^2-x-9+3\)

\(=\left(x^2-9\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

b) Sử dụng phương pháp Hệ số bất định

17 tháng 8 2017

\(a,a^3-7a-6\)

\(\Leftrightarrow a^3+a^2-a^2-a-6a-6\)

\(\Leftrightarrow a^2\left(a+1\right)-a\left(a+1\right)-6\left(a+1\right)\)

\(\Leftrightarrow\left(a+1\right)\left(a^2-a-6\right)\)

\(\left(x+1\right)\left(x+2\right)\left(x-3\right)\)

\(b,a^3+4a^2-7a-10\)

\(\Leftrightarrow a^3+5a^2-a^2-5a-2a-10\)

\(\Leftrightarrow a^2\left(a+5\right)-a\left(a+5\right)-2\left(a+5\right)\)

\(\Leftrightarrow\left(a+5\right)\left(a+1\right)\left(a-2\right)\)

17 tháng 8 2017

\(d,\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)

Đặt a^2+a=y ta có 

y^2+4y-12=(y+6)(y-2)

<=> (a^2+a+6)(a^2+a-2)

<=> (a^2+a+6)(x-1)(x+2)