K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)

\(4n+3⋮d\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)

Vay ta co dpcm

14 tháng 1 2021

c,Đặt  \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)

\(9n+24⋮d\)

\(3n+4\Rightarrow9n+12⋮d\)

Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)

Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau 

10 tháng 2 2019

a) gọi ƯC ( 2n + 1 ; 3n +1 ) = d

      + 2n+1 chia hết cho d => 3(2n +1) chia hết cho d    

        hay 6n +2 chia hết cho d   (1)

      + 3n + 1 chia hết cho d => 2(3N +1 ) chia hết cho d 

hay 6n +2 chia hết cho d   (2)

từ (1) và (2)   => ( 6n + 3 - 6n - 2 ) chia hết cho d

=> 1 chia hết cho d 

=> d là ước của 1 

=> d thuộc tập hợp 1 ; -1 

=> ƯC( 3n +1 ; 2n +1 ) = 1 ; -1

=> chúng nto cùng nhau

10 tháng 2 2019

b) Gọi d > 0 là ước số chung của 7n+10 và 5n+7

=> d là ước số của 5.(7n+10) = 35n +50

và d là ước số của 7(5n+7)= 35n +49

mà (35n + 50) -(35n +49) =1

=> d là ước số của 1 => d = 1

=> đpcm

8 tháng 11 2015

1)Gọi 2 số tự nhiên liên tiếp là n và n+1

Đặt ƯCLN(n,n+1)=d

Ta có: n chia hết cho d

n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n,n+1) =1

=>n và n+1 là 2 số nguyên tố cùng nhau

2)Gọi ƯCLN(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d

3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

8 tháng 11 2015

a) 

Gọi 2 số tự nhiên liên tiếp là n; n+1 

Gọi ƯCLN ( n;n+1) la d 

=> n chia hết cho d; n+1 chia hết cho d      

=> n+1-n chia hết cho d  

=> 1 chia hết cho d 

=> d =1

=>  ƯCLN ( n;n+1) =1

=>  hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau

b) 

Gọi ƯCLN( 2n+5;3n+7) la  d 

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d 

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d 

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d 

=> 6n+15-(6n+14) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1

=>  ƯCLN( 2n+5;3n+7)=1

=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau

12 tháng 7 2015

gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)

25 tháng 11 2016

cảm ơn 

13 tháng 9 2018

Gọi d là ước chung của 2n+1 và 3n+1

\(\Rightarrow2n+1⋮d,3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

31 tháng 12 2018

Gọi d là ước chung của 2n+1 và 3n+1

⇒2n+1⋮d,3n+1⋮d

⇒3(2n+1)−2(3n+1)⋮d

⇒6n+3−6n−2⋮d

⇒1⋮d⇒d=1.

Vậy với n∈Nthì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

29 tháng 11 2015

Đặt ƯCLN(2n+1,3n+1) là (2n+1,3n+1)

Tacó : (2n+1,3n+1)=(2n+1,n)=(n,n+1)

                                            mà ƯCLN(n,n+1)=1

--->ƯCLN(2n+1,3n+1)=1---> hai số 2n+1 và 3n+1 là 2 số NT cùng nhau

tick nha

23 tháng 11 2018

Bai 2:a)

Goi d thuôc UC(n+1;3n+4)

Suy ra:3n+4chia hêt cho d

n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d

Suy ra :3n +4 -3n -3

chia hêt cho d  suy ra 1chia hêt cho d   suy ra d = 1

VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau