Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
88986 x 2003 - 678
= ( 88968 x 2003 ) - 678
= 178238958 - 578
= 178238280
Sao giống bài lớp 7 quá he
Hi°•☆▪¤○●□■♤♡♢♧
\(y.\frac{52}{26}=\frac{17}{13}\)
\(y=\frac{17}{13}:\frac{52}{26}\)
\(y=\frac{17}{26}\)
\(4\frac{1}{2}:y=\frac{2}{7}\)
\(\frac{9}{2}:y=\frac{2}{7}\)
\(y=\frac{9}{2}:\frac{2}{7}\)
\(y=\frac{63}{4}\)
a) \(\frac{3}{5}\times y+\frac{1}{2}:\frac{5}{3}-\frac{5}{4}=\frac{1}{2}\times\frac{1}{3}\)
\(\Rightarrow\frac{3}{5}\times y+\frac{3}{10}-\frac{5}{4}=\frac{1}{6}\)
\(\Rightarrow\frac{3}{5}\times y+\left(-\frac{19}{20}\right)=\frac{1}{6}\)
\(\Rightarrow\frac{3}{5}\times y=\frac{67}{60}\)
\(\Rightarrow y=\frac{67}{36}\)
b) \(\frac{4}{5}:y+\frac{1}{4}\times\frac{1}{6}-\frac{1}{2}=\frac{1}{3}\times\frac{5}{2}\)
\(\Rightarrow\frac{4}{5}:y+\frac{1}{24}-\frac{1}{2}=\frac{5}{6}\)
\(\Rightarrow\frac{4}{5}:y+\left(-\frac{11}{24}\right)=\frac{5}{6}\)
\(\Rightarrow\frac{4}{5}:y=\frac{5}{6}+\frac{11}{24}=\frac{31}{24}\)
\(\Rightarrow y=\frac{4}{5}:\frac{31}{24}=\frac{96}{155}\)
c) \(\frac{3}{5}\times y-\frac{4}{5}:3+\frac{1}{12}=\frac{3}{2}+\frac{1}{5}\)
\(\Rightarrow\frac{3}{5}\times y-\frac{4}{15}+\frac{1}{12}=\frac{17}{10}\)
\(\Rightarrow\frac{3}{5}\times y-\frac{4}{15}=\frac{97}{60}\)
\(\Rightarrow\frac{3}{5}\times y=\frac{113}{60}\)
\(\Rightarrow y=\frac{113}{36}\)
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)