Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)
\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)
\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)
\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)
\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)
\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)
\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(\text{f)}x-2\sqrt{x-1}-a^2\)
\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)
1) ta có : \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
2) ta có : \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
3) ta có : \(x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
4) ta có : \(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
5) ta có : \(-6x+5\sqrt{x}+1=-6x+6\sqrt{x}-\sqrt{x}+1\)
\(=6\sqrt{x}\left(1-\sqrt{x}\right)+\left(1-\sqrt{x}\right)=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)
6) ta có : \(x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)
7) ta có : \(3\sqrt{a}-2a-1=-2a+2\sqrt{a}+\sqrt{a}-1\)
\(=-2\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)=\left(1-2\sqrt{a}\right)\left(\sqrt{a}-1\right)\)
8) ta có : \(x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1\)
\(=\left(\sqrt{x-1}+1\right)^2\)
9) ta có : \(7\sqrt{x}-6x-2=-6x+3\sqrt{x}+4\sqrt{x}-2\)
\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)=\left(2-3\sqrt{x}\right)\left(2\sqrt{x}-1\right)\)
10) ta có : \(x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
11) ta có : \(x-2+\sqrt{x^2-4}=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-2\right)\left(x+2\right)}\)
\(=\sqrt{x-2}\left(\sqrt{x-2}+\sqrt{x+2}\right)\)
Bài 1:
b) Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(=\frac{\sqrt{2\left(4+\sqrt{7}\right)}}{\sqrt{2}}-\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}\)
\(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}-\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\frac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Bài 2:
a) Ta có: \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)
\(=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)\)
\(=a-\sqrt{a}-a-\sqrt{a}\)
\(=-2\sqrt{a}\)
b) Ta có: \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
\(=\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
\(=\sqrt{ab}-\sqrt{ab}=0\)
d) Ta có: \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}+\sqrt{b}\right)\)
=0
Bài 3:
a) ĐKXĐ: x≥0
Ta có: \(\frac{\sqrt{27x}}{\sqrt{3}}=6\)
\(\Leftrightarrow\frac{\sqrt{27}\cdot\sqrt{x}}{\sqrt{3}}=6\)
\(\Leftrightarrow3\cdot\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=\frac{6}{3}=2\)
hay \(x=4\)(thỏa mãn)
Vậy: S={4}
b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-1\end{matrix}\right.\Leftrightarrow x\ge0\)
Ta có: \(\sqrt{x+1}=3-\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(3-\sqrt{x}\right)^2\)
\(\Leftrightarrow x+1=9-6\sqrt{x}+x\)
\(\Leftrightarrow x+1-9+6\sqrt{x}-x=0\)
\(\Leftrightarrow-8+6\sqrt{x}=0\)
\(\Leftrightarrow6\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=\frac{8}{6}=\frac{4}{3}\)
hay \(x=\frac{16}{9}\)(thỏa mãn)
Vậy: \(S=\left\{\frac{16}{9}\right\}\)
Bài 3:
a: \(=\dfrac{3+2\sqrt{2}}{1}-\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}\)
\(=3+2\sqrt{2}-\sqrt{2}=3+\sqrt{2}\)
b: \(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{ab}-b\right)}{\left(a+\sqrt{b}\right)^2}\)
\(=\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=\dfrac{b}{a+\sqrt{b}}\)
c: \(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
\(\sqrt{28-6\sqrt{3}}\)
\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=3\sqrt{3}-1\)
\(\sqrt{6-\sqrt{20}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-1\)
\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)
\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)
\(=\sqrt{x+2}+\sqrt{x+1}\)
\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)
\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)
\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)
\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)
\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)
\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)
\(=6\sqrt{2}\)
\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)
\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
1.
Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)
\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)
\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)
\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)
\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)
2.
\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)
\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)
\(=(a-1)^2\)
3.
\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)
4. Bạn xem lại đề xem đã đúng chưa?
5.
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)
Giải pt :
1
a. ĐKXĐ : \(x\ge4\)
Ta có :
\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)
\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) (TM ĐKXĐ)
Vậy \(S=\left\{13\right\}\)
b.ĐKXĐ : \(-3\le x\le10\)
Ta có :
\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{1;6\right\}\)
\(a,x\sqrt{x}+\sqrt{x}-x-1\\ =\sqrt{x}\left(x+1\right)-\left(x+1\right)\\ =\left(\sqrt{x}-1\right)\left(x+1\right)\\ b,\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\\ =\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\\ =\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)\)
`a, x sqrt x + sqrt x - x - 1`
`= sqrt x(x+1) - (x+1)`
`= sqrt(x-1)(x+1)`
`b, sqrt a(sqrt b + 2) + 3(sqrt b + 2)`
`= (sqrt a + 3)(sqrt b+2)`