Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cực kì chặt nên có lẽ phải sử dụng tới BĐT Schur
Đặt \(x+y+z=p\) ; \(xy+yz+zx=q\)
BĐT cần chứng minh tương đương: \(p^3+4q+6\ge2p^2+3pq\) với \(p;q\ge3\)
TH1: \(p\ge q\)
\(p^3+4q+6-2p^2-3pq\ge0\)
\(\Leftrightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge0\)
Do \(\left\{{}\begin{matrix}p\ge q\\p>2\end{matrix}\right.\) \(\Rightarrow\left(p^2-3q\right)\left(p-2\right)\ge\left(p^2-3p\right)\left(p-2\right)\)
\(\Rightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge\left(p^2-3p\right)\left(p-2\right)-2\left(p-3\right)\)
\(=\left(p-3\right)\left(p^2-2p-2\right)=\left(p-3\right)\left[p\left(p-3\right)+p-2\right]\ge0\)
TH2: \(p\le q\)
Áp dụng BĐT Schur bậc 4:
\(p^4+4q^2+6p\ge5p^2q\Rightarrow p^3+6\ge5pq-\dfrac{4q^2}{P}\)
Do đó ta chỉ cần chứng minh:
\(5pq-\dfrac{4q^2}{p}+4q\ge2p^2+3pq\)
\(\Leftrightarrow p^2q-2q^2+2pq-p^3\ge0\)
\(\Leftrightarrow\left(q-p\right)\left(p^2-2q\right)\ge0\) (đúng)
Vì \(x\ge1\Rightarrow x^2\ge x\)
Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)
\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)
Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)
\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)
\(\Rightarrow\left(x+y\right)^2+z^2\le18\)
\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3
HD: áp dụng BĐT Cô-si cho 3 số hạng trên, khi đó trong căn sẽ triệt tiêu các tổng suy ra đpcm
\(sin\left(\frac{2x}{3}-\frac{\pi}{3}\right)=0\Rightarrow\frac{2x}{3}-\frac{\pi}{3}=k\pi\Rightarrow\frac{2x}{3}=\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{\pi}{2}+\frac{k3\pi}{2}\)
BĐT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi x = y = =z =1