K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(P=2\left(x^3+y^3\right)-3xy\)

\(P=2\left(x+y\right)\left(x^2-2xy+y^2\right)-3xy\)

\(P=2\left(x+y\right)\left(2-2xy\right)-3xy\)

Mặt khác: \(x^2+y^2=2\Leftrightarrow\left(x+y\right)^2-2xy=2\Leftrightarrow xy=\frac{\left(x+y\right)^2-2}{2}\)

Thay \(xy=\frac{\left(x+y\right)^2-2}{2}\) vào P ta có:  \(P=2\left(x+y\right)\left(2-2.\frac{\left(x+y\right)^2-2}{2}\right)-3.\frac{\left(x+y\right)^2-2}{2}\)

Đặt x+y=t <=> \(\left(x+y\right)^2=t^2\le2\left(x^2+y^2\right)=2.2=4\) 

=> \(\left|t\right|\le2\) và \(P=2t\left(2-2.\frac{t^2-2}{2}\right)-3.\frac{t^2-2}{2}=-t^3-\frac{3}{2}.t^2+6t+3\) với \(\left|t\right|\le2\)

Xét \(g\left(t\right)=-t^3-\frac{3}{2}.t^2+6t+3\) trên đoạn [-2;2]

\(g'\left(t\right)=-3t^2-3t+6\)

             \(g'\left(t\right)=0\Leftrightarrow-3t^2-3t+6=\left(-3\right)\left(t^2+t-2\right)=0\)

\(\Leftrightarrow t^2+t-2=t^2-t+2t-2=t\left(t-1\right)+2\left(t-1\right)=\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=-2\in\left[-2;2\right]\\t=1\in\left[-2;2\right]\end{cases}}\)

             \(g\left(-2\right)=-7;g\left(2\right)=1;g\left(1\right)=\frac{13}{2}\)

=>\(P_{max}=\frac{13}{2}\) khi \(x=\frac{1+\sqrt{3}}{2}\) và \(y=\frac{1-\sqrt{3}}{2}\) hoặc \(x=\frac{1-\sqrt{3}}{2}\) và \(y=\frac{1+\sqrt{3}}{2}\)

Vậy .............

14 tháng 7 2016

A=2y^3-4y^2-28y+294

14 tháng 7 2016

bucminhDễ hỉu quớ ha

\(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3-y^3=VT\left(đpcm\right)\)

\(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3\)

29 tháng 7 2016

dễ mà 

phần a) dưa vào kết quả tính ra rùi lm ngược lại

còn phần b)thì tách đầu bài thì ra kết quả

6 tháng 8 2019

\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)

\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

28 tháng 8 2018

a) Ta có:

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow P=1\)

b) \(Q=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)

\(Q=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)

Thay x + y = 1 vào Q

\(Q=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\)

\(Q=1-3xy+3xy-6x^2y^2+6x^2y^2\)

\(Q=1\)

11 tháng 11 2017

xin loi  nha mình không biết 

a: \(=2x^2-x+5\)

b: \(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)

c: \(=-x^3+\dfrac{3}{2}-2x\)

d: \(=-2x^2+4xy-6y^2\)

e: \(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)