Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-3y\right|^{2019}+\left|y+\text{4}\right|^{2020}=0\\ \)
mà \(\left|x-3y\right|\ge0\Rightarrow\left|x-3y\right|^{2019}\ge0\)
\(\left|y+4\right|\ge0\Rightarrow\left|y+4\right|^{2020}\ge0\)
=> phương trình xảy ra <=> \(\left|x-3y\right|=\left|y+4\right|=0\Rightarrow\hept{\begin{cases}y=-4\\x=-12\end{cases}}\)
\(\left|x-3y\right|^{2019}+\left|y+4\right|^{2020}=0\)
\(\text{Ta có : }\left|x-3y\right|^{2019}\ge0;\left|y+4\right|^{2019}\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|^{2019}=0\\\left|y+4\right|^{2020}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|=0\\\left|y+4\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3y\left(1\right)\\y=-4\left(2\right)\end{cases}}\)
\(\text{Thay (2) vào (1) }\Rightarrow x=-12\)
A = 2019 x 2021
A = 2019 x (2020 + 1)
A = 2019 x 2020 + 2019
B = 2020 x (2019 + 1)
B = 2020 x 2019 + 2020
=> B > A
A= 2019 X ( 2020+ 1)
A= 2019x 2020+ 2019
B= 2020 X ( 2019+1)
B= 2020x 2019+ 2020
2019x 2020= 2020x 2019
mà 2019< 2020
nên A< B
\(\hept{\begin{cases}\left(x+\frac{2019}{2020}\right)^{100}\ge0\\\left(y-\frac{9}{11}\right)^{200}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2019}{2020}\\y=\frac{9}{11}\end{cases}}\)
Ta có : \(\left[x+\frac{2019}{2020}\right]^{100}\ge0\forall x\)
\(\left[y-\frac{9}{11}\right]^{200}\ge0\forall y\)
\(\Leftrightarrow\left[x+\frac{2019}{2020}\right]^{100}+\left[y-\frac{9}{11}\right]^{200}\ge0\forall x,y\)
Dấu " = " xảy ra khi : \(\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2019}{2020}\\y=\frac{9}{11}\end{cases}}\)
a, \(x^5-x^2=0\)
\(\Rightarrow x^2\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^3=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
b, \(x^{2020}-x^{2019}=0\)
\(\Rightarrow x^{2019}\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{2019}=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^4-1\right]\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^4-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-5=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=6\end{cases}}}\)
a) \(x^5-x^2=0\)
\(\Rightarrow x^2\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2=0\\x^3-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^3=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x\in\left\{0;1\right\}\)
b) \(x^{2020}-x^{2019}=0\)
\(\Rightarrow x^{2019}\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{2019}=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x\in\left\{0;1\right\}\)
Câu c tương tự nhé em!
Chúc em học tốt nhé!
Bài làm:
Ta có: \(\left(x+2020\right)\times\left(x-2019\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2020=0\\x-2019=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2020\\x=2019\end{cases}}\)
( x + 2020 )( x - 2019 ) = 0
<=> x + 2020 = 0 hoặc x - 2019 = 0
<=> x = -2020 hoặc x = 2019