K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4\left(m^2-4m+6\right)>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Theo đề, ta có: \(\left(\sqrt{x_1}-\sqrt{x_2}\right)^2=4\)

\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)

\(\Leftrightarrow2m-2-2\sqrt{2m-5}=4\)

\(\Leftrightarrow2\sqrt{2m-5}=2m-6\)

\(\Leftrightarrow\sqrt{2m-5}=m-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-6m+9-2m+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-8m+14=0\end{matrix}\right.\)

Đến đây thì dễ rồi, bạn chỉ cần giải pt bậc hai rồi đối chiếu với đk là xong

24 tháng 1 2022

câu a thì làm ntn ạ

4 tháng 3 2022

a, Thay x = -5 ta đc 

\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)

Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)

b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)

Vậy pt trên luôn có 2 nghiệm pb 

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)

\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)

a: Thay x=-5 vào pt, ta được:

25-5m-35=0

=>5m+10=0

hay m=-2

Theo đề, ta có: \(x_1x_2=-35\)

nên \(x_2=7\)

b: \(ac=-1\cdot35< 0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)

hay \(m\in\left\{4;-4\right\}\)

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

5 tháng 4 2021

Ta có:

\(x^2-2\left(m+5\right)x+2m+9=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)

Thế vô làm nốt

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

4 tháng 7 2020

Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\) 

Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)

\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)

\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)

\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)

\(< =>12m+6+36-4m-2>0\)

\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)

Vậy để m thỏa mãn đk trên thì \(m>-5\)

mình sửa đề trên là > 0 nhé 

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)