Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sai ở chỗ này:
\(2cos2x=2cos2x.sinx\)
\(\Leftrightarrow sinx=\frac{2cos2x}{2cos2x}\)
Đúng ra phải là: \(\Leftrightarrow2cos2x.sinx-2cos2x=0\)
\(\Leftrightarrow2cos2x\left(sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ giả thiết \(\Rightarrow n,k\ge2\)
Ta có:
\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác :
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)
Vậy bộ số cần tìm là (n,k,p)=(2,2,5)
a: \(y=\sin x\cdot\cos x=\dfrac{1}{2}\cdot\sin2x\)
Hàm số này tuần hoàn theo chukì \(\dfrac{2\Pi}{2}=\Pi\)
c: \(\tan2x\) tuần hoàn theo chu kì \(T_1=\dfrac{\Pi}{2}\)
tan x/2 tuần hoàn theo chu kì \(T_2=\Pi:\dfrac{1}{2}=2\Pi\)
Do đó: \(y=\tan2x+\tan\left(\dfrac{x}{2}\right)\) tuần hoàn theo chu kì \(T=BCNN\left(T1;T2\right)=2\Pi\)