K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

a) \(9x^2+6x+1=\left(3x+1\right)^2\)

b)\(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

c)\(x^2y^4-2xy^2+1=\left(xy^2-1\right)^2\)

d) \(x^2+\frac{2}{3}x+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2\)

14 tháng 8 2018

a) 9x2 + 6x + 1 = ( 3x + 1 )2

b) x2 - x + 1/4 = ( x - 1/2)2

c) x2 . y4 - 2xy2 + 1 = ( xy2 - 1 ) 2

d) x2 + 2/3x + 1/9 = (x+1/3)2

21 tháng 5 2021

2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)

Khi |x - 1| = 2

=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)

Khi x = - 1 (không thỏa mãn) => Không tìm được A 

b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)

Đẻ P < 8

=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)

=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)

Vậy x > - 1 thì P < 8 

21 tháng 5 2021

Thay x = 1/2 vào 

19 tháng 4 2017

a) x2 + 2x + 1 = x2 + 2.x.1+ 12 = ( x + 1)2

b) 9x2 + y2 + 6xy = (3x)2 + 2.3.x.y + y2 = (3x + y)2

c) 25a2 + 4b2 – 20ab = (5a)2 – 2.5.a.2b. + (2b)2 = (5a – 2b)2

Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a. + (5a)2 = (2b – 5a)2

d) x2 – x + \(\dfrac{1}{4}\) = x2 – 2.x. \(\dfrac{1}{2}\) + ( \(\dfrac{1}{2}\))22 = ( x - \(\dfrac{1}{2}\) )2

Hoặc x2 – x + \(\dfrac{1}{4}\) = \(\dfrac{1}{4}\) - x + x2 = (\(\dfrac{1}{2}\))2 – 2. \(\dfrac{1}{2}\).x + x2 = (\(\dfrac{1}{2}\) - x)2

19 tháng 4 2017

a) x2 + 2x + 1 = x2+ 2 . x . 1 + 12

= (x + 1)2

b) 9x2 + y2+ 6xy = (3x)2 + 2 . 3 . x . y + y2 = (3x + y)2

c) 25a2 + 4b2– 20ab = (5a)2 – 2 . 5a . 2b + (2b)2 = (5a – 2b)2

Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2 . 2b . 5a + (5a)2 = (2b – 5a)2

d) x2 – x + 1414 = x2 – 2 . x . 1212 + (12)2(12)2= (x−12)2(x−12)2

Hoặc x2 – x + 1414 = 1414 - x + x2 = (12)2(12)2 - 2 . 1212 . x + x2 = (12−x)2



28 tháng 10 2020

Bài 2:

a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)

c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)

\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

14 tháng 8 2018

a) \(9x^2+6x+1=\left(3x\right)^2+2.3x.1+1^2=\left(3x+1\right)^2\)

b) \(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2=\left(x-0,5\right)^2\)

c) \(x^2y^4-2xy^2+1=\left(xy^2\right)^2-2.xy^2.1+1^2=\left(xy^2-1\right)^2\)

d) \(x^2+\dfrac{2}{3}x+\dfrac{1}{9}=x^2+2.x.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2=\left(x+\dfrac{1}{3}\right)^2\)

14 tháng 8 2018

a) \(9x^2+6x+1\)

\(=\left(3x\right)^2+2.3x.1+1^2\)

\(=\left(3x+1\right)^2\)

19 tháng 8 2019

\(x^2-6x+9=\left(x-3\right)^2\)

\(\frac{1}{4}a^2+2ab+4b^2=\left(\frac{1}{2}a+b\right)^2\)

\(25+10x+x^2=\left(x+5\right)^2\)

\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(y^4-\frac{1}{3}\right)^2\)

26 tháng 7 2017

a) x2 +4x+4 = ( x + 2 )2

b) 16x2 - 8xy + y2 = ( 4x - y )2

c)9a2 +16b2 - 24ab = ( 3a - 4y ) 2

d) x2 - x + \(\dfrac{1}{4}\)= ( x - \(\dfrac{1}{2}\))2

e) y2 + \(\dfrac{1}{2}y\) + \(\dfrac{1}{16}\) = ( y + \(\dfrac{1}{4}\))2

26 tháng 7 2018

Những hằng đẳng thức đáng nhớ

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)