Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn ra 10 câu hỏi bất kỳ trong số 20 câu hỏi đã cho là .
+ Tiếp theo ta đếm số cách chọn ra 10 câu hỏi mà không có đủ cả ba loại câu hỏi ở trên:
Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và trung bình: cách.
Phương án 2: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và khó: cách.
Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi trung bình và khó: cách.
Từ đó suy ra số lượng đề thỏa mãn yêu cầu có thể lập được là:
Chọn A.
Đáp án D.
- Loại 1: Chọn 10 câu tùy ý có cách.
- Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình, khó.
+ Chọn 10 câu dễ và trung bình trong 16 câu có cách.
+ Chọn 10 câu dễ và khó trong 12 câu có cách.
+ Chọn 10 câu trung bình và khó trong 12 câu có cách.
Vậy số cách chọn đề kiểm tra theo yêu cầu đề bài là:
Đáp án A
Số cách chọn ra 7 câu, trong đó có đủ 3 loại dễ, trung bình và khó trong tổng số 20 câu là 6407
http://www.toanhocnhatrang.com/2015/05/bai-toan-so-298.html
Gọi A là tập hợp cách chọn đề có 3 câu dễ, 1 câu khó, 1 câu trung bình.
B là tập hợp cách chọn đề có 2 câu dễ, 2 câu khó, 1 câu trung bình
C là tập hợp cách chọn đề có 2 câu dễ, 1 câu khó, 2 câu trung bình
D là tập hợp cách chọn đề thỏa mãn yêu cầu đề ra. Ta có:
D = A \(\cup\) B \(\cup\) C
ngoài ra A,B,C đôi một không giao nhau. Theo quy tắc cộng ta có
\(\left|D\right|\) = \(\left|A\right|\) + \(\left|B\right|\) + \(\left|C\right|\) (1)
Theo quy tắc nhân ta có
\(\left|A\right|\) = \(C_{15}^3\).\(C_5^1\).\(C_{10}^1\) = 22750
\(\left|B\right|\) = \(C_{15}^2\).\(C_5^2\).\(C_{10}^1\) = 10500
\(\left|C\right|\) = \(C_{15}^2\).\(C_5^1\).\(C_{10}^2\) = 23625
Thay vào (1) ta có \(\left|D\right|\) = 56875
Vậy có 56875 cách chọn đề kiểm tra.
Có hai phương án xây dựng đề kiểm tra như sau:
· Phương án 1: Đề gồm 1 câu hỏi dễ và 2 câu hỏi khó
Số cách chọn 1 câu hỏi dễ từ 6 câu hỏi dễ là C 6 1 , số cách chọn 2 câu hỏi khó từ 4 câu hỏi khó là C 4 2 .
Theo quy tắc nhân, số cách tạo đề kiểm tra của phương án này là C 6 1 . C 4 2 = 36
· Phương án 2: Đề gồm 2 câu hỏi dễ và 1 câu hỏi khó.
Số cách chọn 2 câu hỏi dễ từ 6 câu hỏi dễ là C 6 2 , số cách chọn 1 câu hỏi khó từ 4 câu hỏi khó là C 4 1 .
Theo quy tắc nhân, số cách tạo đề kiểm tra của phương án này là C 6 2 . C 4 1 = 60
Vậy theo quy tắc cộng thì số đề kiểm tra có thể lập được là : 36 + 60 = 96.
Chọn D.
TH1: chọn \(1\)câu khó từ \(5\)câu: \(C^1_5\).
Chọn \(9\)câu trong đó có cả câu trung bình và câu dễ.
Ta sử dụng phần bù. Số cách là: \(C^9_{45}-C^9_{20}-C^9_{25}\).
TH cách số câu khó từ \(2\)đến \(5\)ta làm tương tự.
Khi đó có tổng số cách chọn \(10\)câu sao cho đủ 3 loại câu hỏi là:
\(C^1_5\left(C^9_{45}-C^9_{20}-C^9_{25}\right)+C^2_5\left(C^8_{45}-C^8_{20}-C^8_{25}\right)+C^3_5\left(C^7_{45}-C^7_{20}-C^7_{25}\right)\)
\(+C^4_5\left(C^6_{45}-C^6_{20}-C^6_{25}\right)+C^5_5\left(C^5_{45}-C^5_{20}-C^5_{25}\right)=7052230625\)
* Loại 1: Chọn 10 câu tùy ý trong 20 câu có C 20 10 cách.
* Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình và khó.
+) Chọn 10 câu dễ và trung bình trong 16 câu có C 16 10 cách.
+) Chọn 10 câu dễ và khó trong 13 câu có C 13 10 cách.
+) Chọn 10 câu trung bình và khó trong 11 câu có C 11 10 cách.
Vậy có C 20 10 − C 16 10 + C 13 10 + C 11 10 = 176451 đề kiểm tra thỏa mãn đầu bài
Chọn đáp án C