K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Gọi số cần lập 

Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.

Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.

Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có  cách.

Theo quy tắc nhân có   số thỏa yêu cầu.

Chọn D.

30 tháng 7 2016

Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số

30 tháng 7 2016

chỉnh hượp chập hai của 5

 

16 tháng 10 2016

1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))

*  ta có h là :

        h= mn 

           trong đó tập hợp mn là {0,1}

               => có 2 trường hợp xảy ra 

                (m,n)=(1,0) hoặc (0,1)

*  ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}

    a có 9 cách chọn 

b có 8 cách chọn 

c có 7 cách chọn 

e có 6 cách chọn 

vậy có 9*8*7*6=3024 số

 *ta  phải loại trường hợp h  đứng đầu và có dạng 01

 trường hợp h  đứng đầu và có dạng 01 có số cách chọn là :

a có 1 cách chọn  là h

b có 8 cách 

c có 7 cách 

e có 6 cách 

=>  có 1*8*7*6=336 số 

 vậy số tự nhiên theo yêu cầu đề bài có tổng cộng

3024 - 332688 số 

0 chắc

 

 

 

19 tháng 10 2016

3*4*4*4*4*4=3072 9 số

b)2*4*4*4*4*4=2048 số

20 tháng 10 2016

gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )

f có 3 cách chọn

a có 5 cách chọn lọc

b;c;d;e đều có 6 cách chọn

 

=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán

b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )

f=0,5 => f có 2 cách chọn

a có 5 cách chọn

b;c;d;e đều có 6 cách chọn

=> có 2*5*6*6*6*6 = 12960

Trả lời :

Có 520 số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,7.

# Hok tốt !

31 tháng 8 2016

Số cách xếp 8 chữ số còn lại vào 8 vị trí là 8! = 40320 
...Vậy TH này có 40320 stn 

31 tháng 8 2016

ukm

NV
3 tháng 1 2022

a. Gọi chữ số cần lập là \(\overline{abcd}\)

TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)

a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)

\(\Rightarrow4.8.8.7\) số

Tổng cộng: \(A_9^3+4.8.8.7=...\)

b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách

Hoán vị 3 chữ số 0,1,2: có \(3!\) cách

Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách

Ta đi tính số trường hợp 0 đứng đầu:

Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách

Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách

Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số

a: \(\overline{abcde}\)

a có 9 cách chọn 

b có 9 cách chọn 

c có 8 cách chọn 

d có 7 cách chọn

e có 6 cách chọn 

=>Số cách chọn là \(9\cdot9\cdot8\cdot7\cdot6=27216\left(cách\right)\)

d:

*Số lẻ:

e có 5 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 45000(cách)

*Số chẵn

e có 5 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 45000(cách)

e: e có 2 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 18000 cách