Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các yếu tố ảnh hưởng đến tốc độ phản ứng:
a) Ảnh hưởng của nồng độ.
Khi nồng độ chất phản ứng tăn, tốc độ phản ứng tăng.
Giải thích:
- Điều kiên để các chất phản ứng được với nhau là chúng phải va chạm vào nhau, tần số va chạm càng lớn thì tốc độ phản ứng càng lớn.
- Khi nồng độ các chất phản ứng tăng, tần số va chạm tăng nên tốc độ phản ứng tăng. Tuy nhiên không phải mọi va chạm đều gây ra phản ứng tăng. Tuy nhiên không phải mọi va chạm đều gây ra phản ứng, chỉ có những va chạm có hiệu quả mới xảy ra phản ứng. Tỉ số giữa số va chạm có hiệu quả và số va chạm chung phụ thuộc vào bản chất của các chất phản ứng, nên các phản ứng khác nhau có tốc độ phản ứng không giồng nhau.
b) Ảnh hướng của áp suất.
Đối với phản ứng có chất khí tham gia, khi áp suất tăng, tốc độ phản ứng tăng.
Giải thích: Khi áp suất tăng, nồng độ chất khí tăng theo, tần số va chạm tăng nên tốc độ phản ứng tăng.
c) Ảnh hưởng của nhiệt độ.
Khi nhiệt độ tăng, tốc độ phản ứng tăng.
Giải thích: Khi nhiệt độ tăng dẫn đến hai hệ quả sau:
- Tốc độ chuyển động của các phần tử tăng, dẫn đến tần số va chạm giữa các chất phản ứng tăng.
- Tần số va chạm có hiệu quả giữa các chất phản ứng tăng nhanh. Đây là yếu tố chính làm cho tốc độ phản ứng tăng nhanh khi tăng nhiệt độ.
d) Ảnh hưởng của diện tích bề mặt.
Đối với phản ứng có chất rắn tham gia, khi diện tích bề mặt tăng, tốc độ phản ứng tăng.
Giải thích: chất rắn với kích thước hạt nhỏ có tổng diện tích bề mặt tiếp xúc với chất phản ứng lớn hơn so với chất rắn có kích thước hạt lớn hơn cùng khối lượng, nên có tốc độ phản ứng lớn hơn.
e) Ảnh hưởng của chất xúc tác.
Chất xúc tác làm tăng tốc độ phản ứng, nhưng không bị tiêu hao trong phản ứng.
Giải thích: người ta cho rằng sự hấp thụ các phana tử phản ứng trên bề mặt chất xúc tác làm tăng hoạt tính của chúng. Chất xúc tác làm yếu liên kiết giữa các nguyên tử của phân tử tham gia phản ứng làm biến đổi cơ chế phản ứng nên làm tăng tốc độ phản ứng.
a, Ta có:
Hai hàm sóng trực giao nhau khi \(I=\int\psi_{1s}.\psi_{2s}d\psi=0\) \(\Leftrightarrow I=\iiint\psi_{1s}.\psi_{2s}dxdydz=0\)
Chuyển sang tọa độ cầu ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.\sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)
\(\Rightarrow\)\(I=\frac{a^3_o}{4.\sqrt{2.\pi}}\int\limits^{\infty}_0\left(2-\frac{r}{a_o}\right).e^{-\frac{3.r}{2.a_o}}.r^2.\sin\theta dr\int\limits^{2\pi}_0d\varphi\int\limits^{\pi}_0d\theta\)
\(=a^3_o.\sqrt{\frac{\pi}{2}}\)(.\(2.\int\limits^{\infty}_0r^2.e^{-\frac{3.r}{2.a_o}}dr-\frac{1}{a_o}.\int\limits^{\infty}_0r^3.e^{-\frac{3.r}{2.a_o}}dr\))
\(=a_o.\sqrt{\frac{\pi}{2}}.\left(2.I_1-\frac{1}{a_o}.I_2\right)\)
Tính \(I_1\):
Đặt \(r^2=u\); \(e^{-\frac{3r}{2a_o}}dr=dV\)
\(\Rightarrow\begin{cases}2.r.dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\) \(\Rightarrow I_1=-r^2.\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}+\frac{4.a_o}{3}.\int\limits^{\infty}_0r.e^{-\frac{3r}{2a_o}}dr\)\(=0+\frac{4a_o}{3}.I_{11}\)
Tính \(I_{11}\):
Đặt r=u; \(e^{-\frac{3r}{2a_o}}dr=dV\)\(\Rightarrow\begin{cases}dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)\(\Rightarrow I_{11}=0+\frac{2a_0}{3}.\int\limits^{\infty}_0e^{-\frac{3r}{2a_o}}dr=\frac{4a^2_o}{9}\)
\(\Rightarrow2.I_1=2.\frac{4a_o}{3}.\frac{4a_o^2}{9}=\frac{32a^3_o}{27}\)
Tính \(I_2\):
Đặt \(r^2=u;e^{-\frac{3r}{2a_o}}dr=dV\) \(\Rightarrow\)\(3r^2dr=du;-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\)
\(\Rightarrow I_2=0+2.a_o.\int\limits^{\infty}_0r^2.e^{-\frac{3r}{2a_o}}dr\)\(\Rightarrow\frac{1}{a_o}.I_2=2a_o.\frac{16a^3_o}{27}.\frac{1}{a_o}=\frac{32a^3_o}{27}\)
\(\Rightarrow I=a^3_o.\sqrt{\frac{\pi}{2}}.\left(\frac{32a^3_o}{27}-\frac{32a^3_o}{27}\right)=0\)
Vậy hai hàm sóng này trực giao với nhau.
b,
Xét hàm \(\Psi_{1s}\):
Hàm mật độ sác xuất là: \(D\left(r\right)=\Psi^2_{1s}=\frac{1}{\pi}.a^3_o.e^{-\frac{2r}{a_o}}\)
\(\Rightarrow D'\left(r\right)=-\frac{2.a_o^2}{\pi}.e^{-\frac{2r}{a_o}}=0\)
\(\Rightarrow\)Hàm đạt cực đại khi \(r\rightarrow o\) nên hàm sóng có dạng hình cầu.
Xét hàm \(\Psi_{2s}\):
Hàm mật độ sác xuất: \(D\left(r\right)=\Psi_{2s}^2=\frac{a^3_o}{32}.\left(2-\frac{r}{a_o}\right)^2.e^{-\frac{r}{a_0}}\)\(\Rightarrow D'\left(r\right)=\left(2-\frac{r}{a_o}\right).e^{-\frac{r}{a_o}}.\left(-4+\frac{r}{a_o}\right)=0\)
\(\Rightarrow r=2a_o\Rightarrow D\left(r\right)=0\); \(r=4a_o\Rightarrow D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)
Vậy hàm đạt cực đại khi \(r=4a_o\), tại \(D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)
hai hàm trực giao: I=\(\int\)\(\Psi\)*\(\Psi\)d\(\tau\)=0
Ta có: I=\(\int\limits^{ }_x\)\(\int\limits^{ }_y\)\(\int\limits^{ }_z\)\(\Psi\)*\(\Psi\)dxdydz=0
=\(\int\limits^{ }_r\)\(\int\limits^{ }_{\theta}\)\(\int\limits^{ }_{\varphi}\)\(\Psi\)1s\(\Psi\)2sr2sin\(\theta\)drd\(\theta\)d\(\varphi\)
=\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2sin\(\theta\)drd\(\theta\)d\(\varphi\)
=C.\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr.\(\int\limits^{\pi}_0\)sin\(\theta\)\(\int\limits^{2\pi}_0\)d\(\varphi\)
với C=\(\frac{1}{4\sqrt{2\pi}}\)a0-3
Xét tích phân: J=\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr
=\(\int\limits^{\infty}_0\)(2r2- \(\frac{r^3}{a_0}\)).e-3r/a0dr
=\(\int\limits^{\infty}_0\)(2r2- \(\frac{r^3}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a0
=\(\frac{-2a_0}{3}\).((2r2-\(\frac{r^3}{a_0}\))e-3r/a0\(-\)\(\int\)(4r-\(\frac{3r^2}{a_0}\))e-3r/adr)
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 - \(\int\)(4r-\(\frac{3r^2}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a)
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0 - \(\int\)(4 - \(\frac{6r}{a_0}\))e-3r/a0dr))
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0- \(\int\)(4 - \(\frac{6r}{a_0}\))\(\frac{-2a_0}{3}\).de-3r/a0))
=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\)e-3r/a0dr)))
=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\).\(\frac{-2a_0}{3}\)de-3r/a0)))
=\(\frac{-2a_0}{3}\)((((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 - 4.e-3r/a0))))
Ta có:
Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)
Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)
Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:
\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)
Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa
Ta có:
\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)
Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)
\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))
\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)
\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)
\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)
áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)
ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)
Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)
.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)
suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)
Cả 5 nhân tố đều ảnh hưởng tới tốc độ phản ứng
=> Đáp án D
a) Ta có: Mật độ xác suất tìm thấy electron trong vùng không gian xung quanh hạt nhân nguyên tử:
D(r) = R2(r) . r2
= 416/729 . a0-5 . r2 . (2 - r/3a0)2 . e-2r/3a0 . r2
= 416/729 . a0-5 . (4r4 - 4r5/3a0 + r6/9a02) . e-2r/3a0
Khảo sát hàm số D(r) thuộc r
Xét: d D(r)/ dr = 416/729 . a0-5 . [(16r3 - 20r4/3a0 + 2r5/3a02) . e-2r/3a0 - (4r4 - 4r5/3a0 + r6/9a02) . 2/3a0 . e-2r/3a0 ]
= 416/729 . a0-5 . e-2r/3a0 . r3 . (16a03 - 28r/3a0 + 14r2/9a02 - 2r3/27a03)
= 832/19683 . a0-8 . e-2r/3a0 . r3 . (-r3 +21r2.a0 - 126r.a02 +216a03)
= - 832/19683 . a0-8 . e-2r/3a0 . r3 . (r - 6a0).(r - 3a0).(r - 12a0)
d D(r)/ dr = 0. Suy ra r =0; r =3a0 ; r = 6a0; r = 12a0
Với r = 0 : D(r) =0
r =3a0 : D(r) = 416/9 .a-1 . e-2
r =6a0 : D(r) = 0
r =12a0 : D(r) = 425984/9.a-1 . e-8
b) Ai vẽ câu này rồi cho up lên với, cám ơn mọi người trước nhé!
a)Mật độ xác suất có mặt electron tỷ lệ với |R3P|2.r2
D(r)=|R3P|2.r2 =D (r)=\(\frac{416}{729}\) .a0-5.(2r2- \(\frac{r^3}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)
Lấy đạo hàm của D theo r để khảo sát mật độ xác suất :
D' (r)= \(\frac{416}{729}\) .a0-5.2.(2r2-\(\frac{r^3}{3a_0}\)).(4r-\(\frac{r^2}{a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)+\(\frac{416}{729}\) .a0-5.(2r2-\(\frac{r^3}{3a_0}\))2.(-\(\frac{2}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)
=\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\). (2r2-\(\frac{r^3}{3a_0}\)) .[(4r-\(\frac{r^2}{a_0}\)).a0 -\(\frac{1}{3}\). (2r2-\(\frac{r^3}{3a_0}\))]
=\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\).r3.(2- \(\frac{r}{3a_0}\)).(\(\frac{r^2}{9a_0}-\frac{5r}{3}+4a_0\))
=>D’(r)=0 => r=0 ,r=3a0 ,r=6a0 ,r=12a0.
Với:r=0 =>D(r)=0
r=3a0 =>D(r)=0
r=6a0 =>D(r)=\(\frac{416}{9a_0.e^2}\)
r=12a0=>D(r)=\(\frac{425984}{a_0.e^8}\)
b)
Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.
bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với
Đáp án : C
nồng độ, nhiệt độ, áp suất.