Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(X \rightarrow Y + \alpha\)
Định luật bảo toàn động năng \(\overrightarrow P_{X} =\overrightarrow P_{Y}+ \overrightarrow P_{\alpha} = \overrightarrow 0. \)
=> \( P_{Y}= P_{\alpha} => m_Y v_Y = m_{\alpha}v_{\alpha}\) hay \(\frac{m_Y}{m_{\alpha}}= \frac{v_{\alpha}}{v_Y}.(1)\)
Lại có \(P^2 = 2mK.\)
=> \(m_YK_Y=m_{\alpha}K_{\alpha}\)
=> \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y}.(2)\)
Từ (1) và (2) => \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y} =\frac{v_{\alpha}}{v_Y} .\)
ban đầu bản phải viết phương trình ra mới làm được loại này :
Li73 +11p => 2. 42X (heli)
sau đó dùng ct: ΔW=(mtrước -msau).c2 => 1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên.
\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)
Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)
Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)
Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là:
\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)
Năng lượng liên kết riêng của hạt nhân
\(W_{lkr}= \frac{W_{lk}}{A} = \frac{(Zm_p+(A-Z)m_n-m_{Be})c^2}{A}\)
\( = \frac{0,0679.931}{10}= 6,3215MeV.\)
\(_0^1n + _3^6 Li \rightarrow X + \alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)
P P P He X n
Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)
=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)
=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)
=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)
Từ (1) và (2) giải hệ phương trình
\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)
\(_{84}^{210}Po \rightarrow_Z^A X + _2^4He\)
\(m_t-m_s = m_{Po}-(m_X + m_{He}) = 5,805.10^{-3}u > 0\), phản ứng là tỏa năng lượng.
=> \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(5,805.10^{-3}.931,5 = K_X+K_{He}\) (do hạt nhân Po đứng yên nen KPo = Ktruoc = 0)
=> \( K_X+K_{He}=5,4074MeV.(1)\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{Po} =\overrightarrow P_{He} + \overrightarrow P_{X} = \overrightarrow 0\)
=> \(P_{He} = P_X\)
=> \(m_{He}.K_{He} =m_X. P_X.(2)\)
Thay mHe= 4,002603 u; mX = 205,974468 u vào (2). Bấm máy giải hệ phương trình được nghiệm
\(K_{He}= 5,3043 \ \ MeV => v_{He} = \sqrt{\frac{2.5,3043.10^6.1,6.10^{-19}}{4,002603.1,66055.10^{-27}}} \approx 1,6.10^7 m/s.\)
mik nghĩ C
nhưng dựa vào định luật bảo tàng động lượng thì xác xuất tỉ lệ chỉ là gần bằng mà thôi nó cũng tương ứng vs 50% còn phải tùy vào sự may mắn hay đáp án nx
mik giải ra là gần bằng 1,6.10^7 m/s
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
\(m = \frac{m_ 0}{\sqrt{1-\frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1-0,6^2}} = 1,25 m_0.\)
Năng lượng của phản ứng hạt nhân DE là: DE = (m0 - m)c2. DE > 0 toả năng lượng → m0 > m
Chọn đáp án B