K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

11 tháng 12 2019

Chọn D.

Phương pháp: Sử dụng tích phân.

Cách giải: Diện tích phần gạch chéo là 

Vậy m=3 thỏa mãn yêu cầu bài toán.

Câu 1: (2,5 điểm)    Cho biểu thức:a) Rút gọn A.b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0c) Tìm x để A = 1/2d) Tìm x nguyên để A nguyên dương.Câu 2: (1điểm)a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.HD:          a < b => -3a > -3bCâu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận...
Đọc tiếp

Câu 1: (2,5 đim)    Cho biểu thức:

2016-04-27_171121

a) Rút gọn A.

b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0

c) Tìm x để A = 1/2
d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.

HD:          a < b => -3a > -3b

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

HD: Đổi 45’ = ¾ h, quãng đường AB = S => S = vt hay S/15 = S/12+3/4

2016-04-27_171454

Câu 4:  (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình. 

2016-04-27_171602

 Câu 5: (1,5 điểm)

a. Viết công thức tính thể tích của hình hộp chữ nhật.

 b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

 

  b) Chứng minh: AH2 = HB.HC.

  c) Tính độ dài các cạnh BC, AH.

9
29 tháng 4 2016

đây là nick phụ của bạn trần việt hà

29 tháng 4 2016

không phải

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

Câu 1: 

\(AB=\sqrt{\left[3-\left(-2\right)\right]^2+\left(3-2\right)^2}=\sqrt{26}\)

\(BC=\sqrt{\left(2-3\right)^2+\left(-2-3\right)^2}=\sqrt{26}\)

\(AC=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-2-2\right)^2}=4\sqrt{2}\)

\(P=\dfrac{AB+BC+AC}{2}=\dfrac{2\sqrt{26}+4\sqrt{2}}{2}=\sqrt{26}+2\sqrt{2}\)

\(S=\sqrt{\left(\sqrt{26}+2\sqrt{2}\right)\cdot2\sqrt{2}\cdot2\sqrt{2}\cdot\left(\sqrt{26}-2\sqrt{2}\right)}=\sqrt{18\cdot8}=12\left(đvdt\right)\)

 

b: Thay x=2 vào (P), ta được:

\(y=-\dfrac{1}{4}\cdot2^2=-1\)

Vì (d) đi qua O(0;0) và A(2;-1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0+b=0\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=0\end{matrix}\right.\)

27 tháng 4 2016

Ta có Pt d2 :x+2y-5=0

vì M ϵ d1 :x-y-1=0 nên M(m,m-1)

MA2 = (-1-m)2 + (2-m+1)2 = 1+2m+m2 +9-6m+m2 =2m-4m+10

<=> MA=\(\sqrt{2m^2-4m+10}\)

d(m,d)= \(\frac{\left|m+2m-2-5\right|}{\sqrt{1^2+2^2}}\)  =\(\frac{\left|3m-7\right|}{\sqrt{5}}\)

theo bài ra thì MA=d(M,d2)

=>\(\frac{\left|3m-7\right|}{\sqrt{5}}\)=\(\sqrt{2m^2-4m+10}\)      <=>|3m-7|=\(\sqrt{5}\)\(\sqrt{2m^2-4m+10}\)

<=>9m2 -42m +49=5(2m2-4m+10)

<=>9m-42m +49=10m2 -20m +50

<=>m2 +22m +1=0

<=>m= -11+2\(\sqrt{30}\) hoặc m=-11-2\(\sqrt{30}\)

=> M(-11+2\(\sqrt{30}\) ,-12+2\(\sqrt{30}\) ) hoặc M(-11-2\(\sqrt{30}\) ,-12-2\(\sqrt{30}\) )

 

18 tháng 7 2017

a) vẽ dễ lắm ; tự vẽ nha

b) xét phương trình hoành độ của 2 đồ thị đó

ta có : \(x^2=-2x+3\Leftrightarrow x^2+2x-3=0\)

ta có : \(a+b+c=1+2-3=0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=1\) \(\Rightarrow y=x^2=1^2=1\) vậy \(A\left(1;1\right)\)

\(x_2=\dfrac{c}{a}=-3\) \(\Rightarrow y=x^2=\left(-3\right)^2=9\) vậy \(B\left(-3;9\right)\)

vậy 2 đồ thị cắt nhau tại 2 điểm phân biệt là \(A\left(1;1\right)\)\(B\left(-3;9\right)\)