K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Chọn B

· Bổ đề: Trong mặt phẳng cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm  A 1 ,   A 2 ,   . . . ,   A 10  và trên tia Oy lấy 10 điểm  B 1 ,   B 2 ,   . . . . ,   B 10   thỏa mãn  O A 1   =   A 1 A 2   =   . . . =   A 9 A 10   =   O B 1   =   B 1 B 2   =   . . . . =   B 9 B 10   =   1 (đvd).

Tìm số tam giác có 2 đỉnh nằm trong 10 điểm đỉnh nằm trong 10 điểm  B 1 ,   B 2 ,   . . . . ,   B 10  sao cho tam giác chọn được có đường tròn ngoại tiếp, tiếp xúc với một trong hai trục Ox hoặc Oy?

Giải: Gọi   là 3 đỉnh của tam giác thỏa yêu cầu bài toán với 

Ta có 

Do đường tròn luôn cắt Ox tại   phân biệt nên đường tròn chỉ có thể tiếp xúc với Oy tại  B p  ta có phương tích 

Do nên dễ thấy 

hay nói cách khác bộ ba (m,n,p)

Vậy có 4 tam giác thỏa mãn yêu cầu bổ đề.

· Bài toán: Không gian mẫu 

Gọi A là biến cố chọn được tam giác có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy. Theo bổ đề ta chọn được 4 tam giác có 2 đỉnh thuộc tia Ox, 1 đỉnh thuộc tia Oy; tương tự có 4 tam giác có 1 đỉnh thuộc tia Oy,  đỉnh thuộc tia . Suy ra, n(A) = 8

Xác suất biến cố A là 

19 tháng 3 2016

Gọi \(\overrightarrow{u},\overrightarrow{v}\) theo thứ tự  là vec tơ chỉ phương đơn vị của các tia Ox, Oy, tương ứng cùng hướng với các tia Ox, Oy gọi I là tâm của \(\omega\). Chọn O làm gốc vec tơ điểm và với mỗi điểm X của mặt phẳng, ký hiệu \(\overrightarrow{x}\) để chỉ vec tơ \(\overrightarrow{OX}\). Trung trực OA cắt các đường thẳng \(d_1,d_2\) theo thứ tự tại B, C.

Khi đó B, C cố định và do I nằm trên đường thẳng BC nên \(\overrightarrow{i}=\alpha\overrightarrow{b}+\left(1-\alpha\right)\overrightarrow{c}\)

Mặt khác , theo định lí chiếu ta có :

\(\overrightarrow{m}=2\left(\overrightarrow{i}.\overrightarrow{u}\right).\overrightarrow{u}\) và \(\overrightarrow{n}=2\left(\overrightarrow{i}.\overrightarrow{v}\right).\overrightarrow{v}\)

Gọi P là trung điểm MN. Suy ra \(2\overrightarrow{p}=\overrightarrow{m}.\overrightarrow{n}\). Bởi vậy, với \(b=OB,c=OC\) và \(t=\cos<\left(\overrightarrow{u}\overrightarrow{v}\right)\) thì b, c, t là các hằng số và :

\(\overrightarrow{p}=\left[\alpha.\overrightarrow{b}\overrightarrow{u}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{u}\right].\overrightarrow{u}+\left[\alpha.\overrightarrow{b}\overrightarrow{v}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{v}\right].\overrightarrow{v}\)

     \(=\alpha.b\left(\overrightarrow{u}+t\overrightarrow{v}\right)+\left(1-\alpha\right).c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\)

     \(=\alpha\overrightarrow{x}+\left(1-\alpha\right)\overrightarrow{y}\)

Trong đó \(\overrightarrow{x}=\overrightarrow{OX}=b\left(\overrightarrow{u}+t\overrightarrow{v}\right)\) và \(\overrightarrow{y}=\overrightarrow{OY}=c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\) là các vec tơ cố định

Suy ra P luôn nằm trên đường thẳng XY cố định khi \(\omega\) thay đổi

 

19 tháng 3 2016

O B M x A I P C N y v u

1 tháng 5 2017

TOÁN 6 :

O x x' z y 100* 50*

a) \(\widehat{xOz}=\widehat{xOy}+\widehat{yOz}\)

\(100^O=50^O+\widehat{yOz}\)

\(\widehat{yOz}=100^o-50^o\)

\(\widehat{yOz}=50^o\)

b) Vì \(\widehat{xOy}=\widehat{yOz}=\dfrac{\widehat{xOz}}{2}=\dfrac{100^o}{2}=50^o\)

c) Vì Ox' là tia đối của Ox nên suy ra \(\widehat{xOx'}=180^o\)

\(\widehat{xOx'}=\widehat{xOz}+\widehat{zOx'}\)

\(180^o=100^o+\widehat{zOx'}\)

\(\widehat{zOx'}=180^o-100^o\)

\(\widehat{zOx'}=80^o\)

31 tháng 3 2017

Giải bài 2 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Trong các mệnh đề sau đây, mệnh đề nào là đúng ? a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P) c) Gọi \(\Delta\) là đường vuông góc chung của...
Đọc tiếp

Trong các mệnh đề sau đây, mệnh đề nào là đúng ?

a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b

b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P)

c) Gọi \(\Delta\) là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(a,\Delta\right)\) và \(\left(b;\Delta\right)\)

d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b

e) Đường vuông góc chung \(\Delta\) của hai đường chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia

1
31 tháng 3 2017

a) Sai, đúng là "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥a và Δ ⊥b"

b) Đúng

c) Đúng

d) Sai

e) Sai

31 tháng 3 2017

Ta có: A' = (1;2), B' = ( 3;-1)

Đường thằng A'B' có phương trình = hay 3x + 2y - 7 = 0

31 tháng 3 2017

Ta có: A' = (1;2), B' = ( 3;-1)

Đường thằng A'B' có phương trình = hay 3x + 2y - 7 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song