K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

2 tháng 10 2019

Đáp án C

19 tháng 11 2019

Chọn C.

15 tháng 7 2019

Đáp án C.

Phương pháp: 

- Viết phương trình mặt phẳng α .  

- Tìm tọa độ giao điểm B, C của  α với trục Oy, Oz.

- Tính thể tích khối tứ diện vuông OABC: V = 1 6 . O A . O B . O C .  

Cách giải:

Giả sử n → a ; b ; c ,   a 2 + b 2 + c 2 ≠ 0  là một vecto pháp tuyến của (P).

Vì α đi qua A 2 ; 0 ; 0 nên PTTQ của (P):

a x − 2 + b y − 0 + c z − 0 = 0  

⇔ a x + b y + c z − 2 a = 0.  

Vì α  vuông góc với α nên n → a ; b ; c  vuông góc với n 1 → 0 ; 2 ; − 1 .  

Khi đó,

0. a + 2. b + − 1 . c = 0 ⇔ c = 2 b  

⇒ α : a x + b y + 2 b z − 2 a = 0  

d O ; α = 4 3 ⇔ − 2 a a 2 + b 2 + 4 b 2 = 4 3 ⇔ 6 a 2 = 16 a 2 + 5 b 2 ⇔ a 2 = 4 b 2 ⇔ a = 2 b a = − 2 b  

Cho

b = 1 ⇒ a = 2 a = − 2 ⇒ n → 2 ; 1 ; 2 n → − 2 ; 1 ; 2 ⇒ α : 2 x + y + 2 z − 4 = 0 α : − 2 x + y + 2 z + 4 = 0  

+ )   α : 2 x + y + 2 z − 4 = 0 ⇒ B 0 ; 4 ; 0 ,   C 0 ; 0 ; 2 ⇒ V O A B C = 1 6 . 2 . 4 . 2 = 8 3  

+ )   α : − 2 x + y + 2 z + 4 = 0 ⇒ B 0 ; − 4 ; 0 ,   C 0 ; 0 ; − 2 ⇒ V O A B C = 1 6 . 2 . − 4 . − 2 = 8 3  

Vậy thể tích khối tứ diện OABC là 8 3 .  

27 tháng 12 2017

1 tháng 4 2019

Phương pháp:

Gọi tọa độ các điểm A, B, C.

Lập phương trình mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz bằng phương trình đoạn chắn.

Từ đó tìm được các điểm A, B, C. Từ đó tính được bán kính mặt cầu ngoại tiếp tứ diện OABC.

9 tháng 12 2017

Chọn đáp án B.

29 tháng 5 2018

Đáp án A.

6 x - 3 y + 2 z - 12 = 0 .

Tương tự

B 0 ; 4 ; 0 , C 0 ; 0 ; 6 ⇒ A B C : x 2 + y 4 + z 6 = 1 ⇔ 6 x + 3 y + 2 z − 12 = 0.

 

30 tháng 7 2018