Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tâm I ∈ a ⇒ I( 1 + 2t; t; -2t )
I A 2 = I B 2 ⇔ t = - 1 ⇒ I - 1 ; - 1 ; 2 R = I A = 17
Vậy phương trình mặt cầu (S) là x + 1 2 + y + 1 2 + z - 2 2 = 17
x + 1 2 + y + 1 2 + z - 2 2 = 17
Đáp án A
Chọn B.
Phương pháp: Gọi I là tâm mặt cầu thì IM=IN nên I nằm trên mặt phẳng trung trực của MN.
Cách giải: Phương trình mặt phẳng trung trực của MN là
Đáp án C
Gọi B 2 + t ; - 1 - t ; 1 + t A B ¯ = 1 + t ; - t ; t - 2 . Cho A B ¯ . u d ¯ = 0 ⇔ t + 1 - 4 t - 2 t + 4 = 0 ⇔ t = 1 ⇒ A B ¯ = 2 ; - 1 ; - 1
Khi đó d : x - 1 2 = y + 1 - 1 = z - 3 - 1 .
Đáp án D
Mặt phẳng (P) vuông góc với đường thẳng d nên (P) nhận vecto chỉ phương của d là một vecto pháp tuyến. Ta có phương trình mặt phẳng (P) là