K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

Chọn A

Gọi  là một vec tơ pháp tuyến của mặt phẳng (P).

Theo đề bài ta có mặt phẳng (P) vuông góc với mặt phẳng (α): x-y+z-4=0 nên ta có phương trình a-b+c=0 ó b=a+c 

Phương trình mặt phẳng (P) đi qua A(0;1;2) và có véc tơ pháp tuyến  là ax+ (a+c) (y-1)+c (z-2) =0

Khoảng cách từ tâm I (3;1;2) đến mặt phẳng (P) là 

Gọi r là bán kính của đường tròn giao tuyến giữa mặt cầu (S) và mặt phẳng (P) ta có r²=16-h² ;  r nhỏ nhất khi h lớn nhất.

Dấu “=” xảy ra khi a = -2c. => một véc tơ pháp tuyến là => phương trình mặt phẳng (P) là 2x+y-z+1=0.

Vậy tọa độ giao điểm M của (P) và trục x'Ox là: 

28 tháng 7 2018

Đáp án A.

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là 2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la 3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là 4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng 5 trong ko gian hệ tọa độ oxyz, cho...
Đọc tiếp

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là

2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la

3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\)

4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng

5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng

6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là

7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là

8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\)

9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là

10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB

11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là

12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?

13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ

14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là

15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là

16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0

17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)

18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là

19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?

20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C

A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1

C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1

7
NV
16 tháng 5 2020

19.

Phương trình mặt phẳng theo đoạn chắn:

\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)

\(\Leftrightarrow4x-3y-6z-12=0\)

20.

Phương trình mặt phẳng (ABC) theo đoạn chắn:

\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)

\(\Leftrightarrow6x+3y+2z-6=0\)

Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)

NV
16 tháng 5 2020

15.

\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)

16.

\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)

Phương trình (P):

\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)

17.

\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)

\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Phương trình mặt phẳng (R):

\(2x+3y+z=0\)

18.

\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)

\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)

Phương trình:

\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)

\(\Leftrightarrow9x+6y+4z-30=0\)

6 tháng 11 2019

29 tháng 6 2017

Đáp án B

Phương pháp:

- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Cách giải:

( S ) :   x - 1 2 + y - 2 2 + z - 3 2 = 25  có tâm  I(1;2;3) và bán kính  R = 5

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất  <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S)

Ta có 

Ta có:

(*) có nghiệm 

Khi đó T =a+b+c =2-2c+2+c=4-1 =3

27 tháng 8 2018

Đáp án A

Vì mặt phẳng (P) đi qua A, B nên

3 a - 2 b + 6 c - 2 = 0 b = 2 ⇔ a = 2 - 2 c b = 2 ⇒ ( P ) :   ( 2 - 2 c ) x + 2 y + c z = 0

Khoảng cách từ tâm I (1;2;3) của (S) đến (P) là:

d(I,(P))= ( 2 - 2 c ) + 2 . 2 + c . 3 - 2 ( 2 - 2 c ) 2 + 2 2 + c 2 = c + 4 5 c 2 - 8 c + 8

Khi đó bán kính của đường tròn giao tuyến là: 

r= 25 - ( c + 4 ) 2 5 c 2 - 8 c + 8 = 124 c 2 - 208 c + 184 5 c 2 - 8 c + 8

Để r đạt giá trị nhỏ nhất thì hàm số

f(t)= 124 t 2 - 208 t + 184 5 t 2 - 8 t + 8 trên [1;+ ∞ ) phải nhỏ nhất

Ta có: f'(t)= 48 t 2 + 144 t - 192 ( 5 t 2 - 8 t + 8 ) 2 ,

f'(t)=0 ⇔

Khi đó hàm số đạt giá trị nhỏ nhất tại t=1 ⇒ c=1

Ta có: T=a+b+c=2-2c+2=4-c=3

7 tháng 4 2019

NV
10 tháng 5 2020

3.

\(d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{5^2+3^2}=\sqrt{34}\)

Pt mặt cầu:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=34\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y+2z-28=0\)

4.

\(\left(\alpha\right)\) nhận \(\left(2;-3;-4\right)\) là 1 vtpt và tất cả các vecto có dạng \(\left(2k;-3k;-4k\right)\) cũng là các vecto pháp tuyến với \(k\ne0\) (bạn tự tìm đáp án phù hợp)

5.

\(\overrightarrow{AB}=\left(3;-6;0\right)\) ; \(\overrightarrow{AC}=\left(5;3;3\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(-18;-9;39\right)=-3\left(6;3;-13\right)\)

Mặt phẳng (ABC) nhận \(\left(6;3;-13\right)\) là 1 vtpt

Phương trình:

\(6\left(x+1\right)+3\left(y-2\right)-13\left(z-3\right)=0\)

\(\Leftrightarrow6x+3y-13z+39=0\)

NV
10 tháng 5 2020

1.

\(\overrightarrow{IA}=\left(4;2;6\right)\Rightarrow R^2=IA^2=4^2+2^2+6^2=56\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y+3\right)^2+\left(z+2\right)^2=56\)

Dạng khai triển:

\(x^2+y^2+z^2-2x+6y+4z-42=0\)

2.

\(\overrightarrow{BA}=\left(10;2;-12\right)\Rightarrow R=\frac{AB}{2}=\frac{1}{2}\sqrt{10^2+2^2+12^2}=\sqrt{62}\)

Gọi I là trung điểm AB \(\Rightarrow I\left(1;1;1\right)\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=62\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z-59=0\)

NV
19 tháng 4 2019

Phương trình đường thẳng d qua A và vuông góc \(\left(\alpha\right)\): \(\left\{{}\begin{matrix}x=t\\y=1-t\\z=2+t\end{matrix}\right.\)

Giao điểm B của d và \(\left(\alpha\right)\): \(t-\left(1-t\right)+2+t-4=0\Rightarrow t=1\Rightarrow B\left(1;0;3\right)\)

Gọi phương trình (P): \(ax+by+cz+d=0\)

Do (P) chứa A và B \(\Rightarrow\left\{{}\begin{matrix}b+2c+d=0\\a+3c+d=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=-a-3c\\b=a+c\end{matrix}\right.\)

\(\Rightarrow ax+\left(a+c\right)y+cz-a-3c=0\)

\(d\left(I;\left(P\right)\right)=\frac{\left|3a+a+c+2c-a-3c\right|}{\sqrt{a^2+\left(a+c\right)^2+c^2}}=\frac{\left|3a\right|}{\sqrt{2a^2+2c^2+2ac}}=k\ge0\)

Để bán kính đường tròn là nhỏ nhất \(\Rightarrow k\) lớn nhất

- Với \(c=0\Rightarrow k=\frac{3}{\sqrt{2}}\)

- Với \(c\ne0\):

\(\left|3a\right|=k\sqrt{2a^2+2ac+2c^2}\Leftrightarrow\left(2k^2-9\right)a^2+2k^2c.a+2k^2c^2=0\)

\(\Delta'=\left(k^2c\right)^2-2k^2c^2\left(2k^2-9\right)=-3k^4c^2+18k^2c^2\)

\(\Delta'\ge0\Rightarrow3k^2c^2\left(6-k^2\right)\ge0\Rightarrow k^2\le6\Rightarrow k\le\sqrt{6}\)

So sánh 2 giá trị \(k=\sqrt{6}\)\(k=\frac{3}{\sqrt{2}}\Rightarrow k_{max}=\sqrt{6}\)

Khi đó \(a=\frac{-2k^2c}{2\left(2k^2-9\right)}=-2c\)

\(\Rightarrow\left(P\right):\) \(-2cx-cy+cz-c=0\Leftrightarrow2x+y-z+1=0\)

\(\Rightarrow M\left(-\frac{1}{2};0;0\right)\)

15 tháng 11 2017

Đáp án D

Gọi phương trình đường thẳng là 

Vì nằm trong mặt phẳng  (P)

Góc giữa hai đường thẳng và Oz là  

Ta có  

Khi  cos α lớn nhất  ⇒   α   nhỏ nhất và bằng  a r cos 6 3 . Xảy ra khi  b = 2 c = 2 a

Do đó, phương trình đường thẳng  là