Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Cho ; nhận n 1 → = a 1 ; b 1 ; c 1 ; n 2 → = a 2 ; b 2 ; c 2 lần lượt là các VTPT. Khi đó, góc giữa hai mặt phẳng
α ; β được tính: cos α ; β = cos n 1 → ; n 2 → = n 1 → . n 2 → n 1 → n 2 →
Với 0 0 ≤ α ≤ 90 0 ⇒ α m i n ⇔ cos α m a x
Cách giải:
(P): x + 2y – 2z +2018 = 0 có 1 VTPT: n 1 → = 1 ; 2 ; - 2
(Q): x + my + (m – 1)z + 2017 = 0 có 1 VTPT: n 2 → = 1 ; m ; m - 1
Góc giữa hai mặt phẳng (P) và (Q):
cos P ; Q = cos n 1 → ; n 2 → = n 1 → . n 2 → n 1 → n 2 →
Với 0 0 ≤ α ≤ 90 0 ⇒ α m i n ⇔ cos α m a x
=>((P),(Q))min khi và chỉ khi
Khi đó,
Ta thấy:
Chọn đáp án D
Mặt phẳng (P) có vec-tơ pháp tuyến là n P ⇀ = 1 ; m ; - 1
Mặt phẳng (Q) có vec-tơ pháp tuyến là n Q ⇀ = m ; - 1 ; 1
Đường thẳng d m là giao tuyến của hai mặt phẳng (P) và (Q) nên có một vec- tơ chỉ phương là
Mặt phẳng (P) có vec-tơ pháp tuyến là n R ⇀ = 3 ; 1 ; 2
Để d m ⊥ R ⇔ Hai vec-tơ u ⇀ và n R ⇀ cùng phương
⇒ Không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Đáp án B
Vì A 1 ; 1 ; − 2 ∈ d nên phương trình của đường thẳng d là: x = 1 + 2 t y = 1 + 6 t z = − 2 + t
Đáp án A
Phương pháp : Cho hai mặt phẳng có phương trình lần lượt là :
(P): Ax+By+Cz+D = 0, (Q): A’x+B’y+C’z+D = 0.
Khi đó (P) và (Q) song song với nhau
Cách giải:
Gọi n p → ; n Q → lần lượt là các VTPT của (P) và (Q) ta có
Khi đó ta có
Dấu “=” xảy ra
Khi đó (Q) đi qua điểm
Chọn C.