Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (P) có vec tơ pháp tuyến là \(\overrightarrow{n_1}\left(1;1;1\right)\)
\(\overrightarrow{AB}\left(1;-1;-1\right)\)
Vì (Q) vuông góc với mp (P) và chứa A; B nên véc tơ pháp tuyến của (Q) là \(\overrightarrow{n_2}\) vuông góc với cả \(\overrightarrow{n_1}\left(1;1;1\right)\) và \(\overrightarrow{AB}\left(1;-1;-1\right)\)
=> \(\overrightarrow{n_2}\) = \(\left[\overrightarrow{n_1};\overrightarrow{AB}\right]\) = (0; 2; -2)
mp(Q) đi qua A (-1;2;2) và có vec tơ pt là \(\overrightarrow{n_2}\) có phương trình là: 0.(x +1) + 2(y - 2) -2.(z - 2) = 0 <=> 2y - 2z = 0 <=> y - z = 0
b) đường thẳng AB có vec tơ chỉ phương là \(\overrightarrow{AB}\left(1;-1;-1\right)\) và đi qua B(0;1;1) có phương trình tham số là:
\(\begin{cases}x=t\\y=1-t\\z=1-t\end{cases}\left(t\in R\right)\)
H = AB giao với (P)
H thuộc AB => H (a; 1-a; 1 - a)
H thuộc mp(P) => a + 1- a+ 1 - a = 0 => 2 - a = 0 => a = 2
Vậy H (2; -1; -1)
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Đáp án B
Gọi A = ∆ ∩ P ; d = P ∩ Q
Lấy I ∈ ∆ ⇒ A ; I cố định, kẻ I H ⊥ P ; H K ⊥ d ⇒ P ; Q ^ = I K H ^ = φ
Do I A ≥ I K ⇒ sin φ = I H I K ≥ I H I A ⇒ φ m i n khi K ≡ A tức là I A ⊥ d ⇒ n Q → = u ∆ → ; u d →
Trong đó n ∆ ¯ = 1 ; - 2 ; - 2 ; u d ¯ = u ∆ ¯ ; u P ¯ = 3 ; 0 ; 3 = 3 1 ; 0 ; 1
Suy ra n Q ¯ = u ∆ ¯ ; u d ¯ = - 2 1 ; 1 ; - 1 , mặt khác (Q) chứa đường thẳng ∆ nên (Q) đi qua điểm (1;2;-1)
Do đó Q : x + y - z - 4 = 0 ⇒ A 4 ; 0 ; 0 , B ( 0 ; 4 ; 0 ) , C ( 0 ; 0 ; - 4 ) ⇒ V O . A B C = 64 6 = 32 3
Đáp án C