K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.

b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.

c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.

13 tháng 4 2016

a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.

b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.

c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.


 

28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

31 tháng 7 2019

A B D C O / / // // a) Chứng minh \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\)

Ta có: \(\overrightarrow{AC}-\overrightarrow{CD}=\overrightarrow{AD}\left(đpcm\right)\) ( vì \(\overrightarrow{BA}=\overrightarrow{CD}\) )

b) Chứng minh \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) ( theo quy tắc hình bình hành )

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\left(đpcm\right)\)

bài này chả khó áp dụng 1 bước là ra ngay điều cần chứng minh rồi

13 tháng 4 2016

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

 

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

 

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.

13 tháng 4 2016

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.

 

17 tháng 5 2017

A B C D O
a) \(\overrightarrow{AO}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{DO}=\left(\overrightarrow{AO}+\overrightarrow{CO}\right)+\left(\overrightarrow{BO}+\overrightarrow{DO}\right)\)
\(=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\).
b) \(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}=\overrightarrow{AC}+\overrightarrow{AC}=2\overrightarrow{AC}\).
c) \(\overrightarrow{OC}-\overrightarrow{OD}=\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{DC}\).