K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

Hình 22.4c

24 tháng 8 2016

Cường đô ̣dòng điêṇ vuông pha hiêụ điêṇ thế hai đầu mac̣h: 
\Rightarrow (\frac{u}{U_0})^2 + (\frac{i}{I_0})^2 = 1 \Leftrightarrow U_0 = 200\sqrt{2}V \Rightarrow U = 200 V

23 tháng 8 2016

Ta có tốc độ góc là \omega = 5 \pi (rad/s)
Suất điện động cực đại: Eo = ω.ϕ
Theo giả thiết, ta có (\frac{4}{\phi _0})^2 + (\frac{15 \pi}{\omega \phi _0})= 1
\Rightarrow \phi _0 = 5 (Wb)

1 tháng 6 2016

O u 3 a t M 2a

Điều kiện sóng dừng 2 đầu cố định: \(l=\frac{k\lambda}{2}\Rightarrow\lambda=l=\frac{v}{f}\Rightarrow f=\frac{v}{l}\)(Với k = 2, vì trên hình có 2 bụng).
Thời gian từ \(u=x\rightarrow u=-x\)  (liên tiếp):  \(5\Delta t-\Delta t=4\Delta t\)
Suy ra thời gian từ vị trí: \(u=x\rightarrow u=0\)  là:  \(\frac{4\Delta t}{2}=2\Delta t\)
Suy ra thời gian đi từ vị trí: \(u=2a\rightarrow u=0\) (biên về VTCB) là  \(\Delta t+2\Delta t=3\Delta t=\frac{T}{4}\)
Chu kì dao động:  \(T=4.3\Delta t=12\Delta t\)
Suy ra: \(A_M=x=2a.\frac{\sqrt{3}}{2}=a\sqrt{3}\)  (dựa vào hình vẽ, cung \(\Delta t\) ứng với 300).
Dựa vào vòng tròn:  \(V_M\) \(_{max}=a\sqrt{3}.\omega=a\sqrt{3}.2\pi f=2\pi\sqrt{3}\frac{va}{l}\)

Đáp án B 

15 tháng 11 2017

V=s/t

Theo bài v=u/t = 4/0.02 = 200 cm/s = 2m/s

29 tháng 5 2016

Hướng dẫn:

\(U_{AB}=U_C=2\) (1)

\(U_{BC}^2=U_r^2+U_L^2=3\) (2)

\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)

Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)

Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)

 

24 tháng 8 2016

Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)

\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)

Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)

A đúng

24 tháng 8 2016

Ta có: L = R^2 C = r^2 C
\Rightarrow Z_L. Zc = R^2 = r^2

Điện áp hiệu dụng của đoạn mạch RC gấp \sqrt{3} lần điện áp hiệu dụng hai đầu cuộn dây 
I. \sqrt{R^2 + Z_c^2} = \sqrt{3}.I. \sqrt{r^2 + Z_L^2}\Leftrightarrow R^2 + Z_c^2 = 3 (r^2 + Z_L^2)
\Leftrightarrow Z_L.Zc + Z_c^2 = 3.Z_L.Zc + 3 Z_L^2
\Leftrightarrow Zc(Z_L + Zc) = 3 Z_L (Z_L + Zc)
\Rightarrow Zc = 3Z_L \Rightarrow R^2 = 3 Z_L^2 \Rightarrow R = Z_L\sqrt{3}
=> Hệ số công suất của đoạn mạch là
cos \varphi = \frac{R + r}{\sqrt{(R + r)^2 + (Z_L - Zc)^2}} = \frac{2R}{\sqrt{4R^2 + 4 Z_L^2}} = \frac{2\sqrt{3}Z_L}{\sqrt{4.3. Z_L^2 + 4 Z_L^2}} = \frac{\sqrt{3}}{2}

17 tháng 11 2015

Mạch chỉ có điện trở thuần thì u cùng pha với i.

Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)

Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)

\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)

\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.

25 tháng 1 2016

Từ ĐK đầu bài ta có: Zc^{2}=r^{2}+Zl^{2}=r^{2}+(Zl-Zc)^{2}\Rightarrow Zc=2Zl=100\Rightarrow \omega ^{2}=\frac{1}{2LC}
tần số dao động riwwng của mạch là:(80\Pi )^{2}=\frac{1}{L(C-\Delta C)}\Rightarrow L.C-L\Delta C=\frac{1}{80^{2}.10}\Rightarrow \frac{1}{2\omega^{2}}-\frac{50}{\omega }.\frac{0,125.10^{-3}}{\Pi }=\frac{1}{80^{2}.10}
giải phương trình bâc 2 này ra ta được: \omega =40\Pi

25 tháng 1 2016

Z=Z_{C}=Z_{Lr}=100\Omega

Z_{C}=2Z_{L}\Rightarrow \frac{1}{\omega C}=2\omega L\Rightarrow \frac{1}{LC}=2\omega ^{2}(1)

{\omega _{0}}^{2}=\frac{1}{L(C+\Delta C)}(2)

Lấy (1) chia (2) ta được:  \frac{2\omega ^{2}}{{\omega _{0}}^{2}}=\frac{C+\Delta C}{C}