K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

Đáp án B

Các câu a, b, d, e là các mệnh đề. Các câu c, f không là mệnh đề.

Vậy có 2 câu không là mệnh đề.

31 tháng 3 2023

2 câu không phải là mệnh đề đó là c và f 

1 tháng 4 2017

Đáp án A

Mệnh đề câu a: đúng nên phủ định của nó sai.

Mệnh đề câu b: sai nên phủ định của nó đúng.

Mệnh đề câu c: đúng nên phủ định của nó sai.

Mệnh đề câu d: đúng nên phủ định của nó sai.

Vậy có 1 mệnh đề mà phủ định của nó là các mệnh đề đúng.

16 tháng 5 2017

a) Là một mệnh đề

b) Là một mệnh đề chứa biến

c) Không là mệnh đề, không là mệnh đề chứa biến

d) Là một mệnh đề

26 tháng 10 2021

b

13 tháng 4 2016

a) Mệnh đề sai;

b) Mệnh đề chứa biến;

c) Mệnh đề chứa biến;

d) Mệnh đề đúng.

2 tháng 4 2017

a) Mệnh đề sai;

b) Mệnh đề chứa biến;

c) Mệnh đề chứa biến;

d) Mệnh đề đúng.


22 tháng 7 2021

a, Mệnh đề sai

b, Mệnh đề chứa biến

c, Mệnh đề chứa biến

d, Mệnh đề đúng

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?A. 6     B.12       C.9         D.15Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?A.10     B.\(\sqrt{84}\)  C.42       D.15Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)Câu 4: Tam giác...
Đọc tiếp

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?

A. 6     B.12       C.9         D.15

Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?

A.10     B.\(\sqrt{84}\)  C.42       D.15

Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?

A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)

Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?

A. 6        b. 8     C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)

Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?

A.1       b.\(\sqrt{2}\)        c. \(\sqrt{3}\)        D.2   

Câu 6: Cho tam giác ABC có a+b2 -c2 > 0. Khi đó góc C là ?

A. Góc C > 90 độ       B. Góc C < 90 độ    C.Góc C = 90  độ             D. Không có kết luận

Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành

cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^

0
16 tháng 5 2017

a) Đúng

b) Sai

c) Đúng

d) Sai

e) Đúng

22 tháng 9 2016

A B C c b a I

Ta có : \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=0\Leftrightarrow a.\overrightarrow{IA}+\left(b+c\right).\overrightarrow{IA'}=\overrightarrow{0}\) (Công thức thu gọn)

\(\Rightarrow I\in AA'\) và 

\(\frac{IA}{IA'}=\frac{b+c}{a}=\frac{c}{\frac{ac}{b+c}}=\frac{BA}{BA'}\)

Nhờ vào tính chất đường phân giác, dễ dàng thấy điểm I thuộc tia phân giác góc B, tức I là tâm của đường tròn ngoại tiếp tam giác ABC

=> Điều đó đúng với giả thiết.

Vậy ta có đpcm

23 tháng 9 2016

cảm ơn cảm ơn bạn nhiều lắm^^

 

Hi  :DSau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vàoCâu 1:Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)Câu 2:Với a,b,c là các số thực dương và \(abc=1\).Chứng minh...
Đọc tiếp

Hi  :D

Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào

Câu 1:

Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:

\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)

Câu 2:

Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:

\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)

Câu 3:

Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:

\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)

Câu 4:

Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:

\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)

Câu 5:

Với a,b,c là các số thực không âm.Chứng minh rằng:

\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)

 

Continue...

 

 

1
31 tháng 5 2020

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.