Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mệnh đề câu a: đúng nên phủ định của nó sai.
Mệnh đề câu b: sai nên phủ định của nó đúng.
Mệnh đề câu c: đúng nên phủ định của nó sai.
Mệnh đề câu d: đúng nên phủ định của nó sai.
Vậy có 1 mệnh đề mà phủ định của nó là các mệnh đề đúng.
a) Là một mệnh đề
b) Là một mệnh đề chứa biến
c) Không là mệnh đề, không là mệnh đề chứa biến
d) Là một mệnh đề
a) Mệnh đề sai;
b) Mệnh đề chứa biến;
c) Mệnh đề chứa biến;
d) Mệnh đề đúng.
a) Mệnh đề sai;
b) Mệnh đề chứa biến;
c) Mệnh đề chứa biến;
d) Mệnh đề đúng.
a, Mệnh đề sai
b, Mệnh đề chứa biến
c, Mệnh đề chứa biến
d, Mệnh đề đúng
A B C c b a I
Ta có : \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=0\Leftrightarrow a.\overrightarrow{IA}+\left(b+c\right).\overrightarrow{IA'}=\overrightarrow{0}\) (Công thức thu gọn)
\(\Rightarrow I\in AA'\) và
\(\frac{IA}{IA'}=\frac{b+c}{a}=\frac{c}{\frac{ac}{b+c}}=\frac{BA}{BA'}\)
Nhờ vào tính chất đường phân giác, dễ dàng thấy điểm I thuộc tia phân giác góc B, tức I là tâm của đường tròn ngoại tiếp tam giác ABC
=> Điều đó đúng với giả thiết.
Vậy ta có đpcm
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
Đáp án B
Các câu a, b, d, e là các mệnh đề. Các câu c, f không là mệnh đề.
Vậy có 2 câu không là mệnh đề.
2 câu không phải là mệnh đề đó là c và f