K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

 

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến CT và dây CD

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

11 tháng 4 2017

a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:

\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)

\(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)

Vậy =

b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:

\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)

\(\widehat{DCB}\) là góc nội tiếp trên

\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)

Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)

27 tháng 4 2021

giúp em với năn nỉ m,n 

17 tháng 3 2018

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) + Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh ở ngoài đường tròn chắn hai cung Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh ở ngoài đường tròn chắn hai cung Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến CT và dây CD

Giải bài 38 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.

a: Xét ΔOAC có OA=OC và góc AOC=60 độ

nên ΔOAC đều

=>góc CAO=60 độ

Xet ΔOBD có OB=OD và góc DOB=60 độ

nên ΔOBD đều

=>góc B=60 độ

Xét ΔEAB có góc EAB=góc EBA=60 độ

nên ΔEAB đều

=>góc E=60 độ

góc BOC=60+60=120 độ

=>góc BTC=60 độ=góc AEB

16 tháng 4 2020

a) Ta có \(\widehat{AND}=\widehat{AMD}\)(góc nội tiếp cùng chắn cung AD)

\(AM//BN\Rightarrow\widehat{AMN}=\widehat{MNB}\left(slt\right)\)

Ta có góc ANB nội tiếp đường trong O chắn nửa đường trong => góc ANB=900

Ta có: \(\widehat{AMD}+\widehat{AMN}+\widehat{DNM}=\widehat{DNM}+\widehat{AND}+\widehat{MNB}\)

\(\Leftrightarrow\widehat{DMN}+\widehat{MND}=90^0\Leftrightarrow\widehat{NDM}=90^0\)

Vì DM//AB và ND vuông góc với DM => DN vuông góc với AB

b) Ta có \(\widehat{BAN}=\widehat{BMN}\)(cùng chắn cung BN)

Mà \(\widehat{AMN}+\widehat{NMB}=90^0\Rightarrow\widehat{BAN}+\widehat{BAM}=90^0\Rightarrow\widehat{MAN}=90^0\)

\(\Rightarrow MANB\)là hcn

=> AM=BN

Ta có MC//AE và AM//EC => AMCE là hbh => AM=EC mà AM=BN => BN=EC mà BN//EC => ENBC là hbh =>EN//CB => CB vuông góc với AB(vì AB vuông góc với EN)=> BC là tiếp tuyến của đường tròn O
Chúc bạn học tốt!!!