Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nh 98): Xét ΔABC và ΔABD có:
Nên ΔABC = ΔABD (g.c.g)
- Hình 99): Ta có:
Xét ΔABD và ΔACE có:
Nên ΔABD = ΔACE ( g.c.g)
Xét ΔADC và ΔAEB có:
DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)
Nên ΔADC = ΔAEB (g.c.g)
Xem hình 98)
∆ABC và ∆ABD có:
ˆA1A1^=ˆA2A2^(gt)
AB là cạnh chung.
ˆB1B1^=ˆB2B2^(gt)
Nên ∆ABC=∆ABD(g.c.g)
Xem hình 99)
Ta có:
ˆB1B1^+ˆB2B2^=1800 (Hai góc kề bù).
ˆC1C1^+ ˆC2C2^=1800 (Hai góc kề bù)
Mà ˆB2B2^=ˆC2C2^(gt)
Nên ˆB1B1^=ˆC1C1^
* ∆ABD và ∆ACE có:
ˆB1B1^=ˆC1C1^(cmt)
BD=EC(gt)
ˆDD^ = ˆEE^(gt)
Nên ∆ABD=∆ACE(g.c.g)
* ∆ADC và ∆AEB có:
ˆDD^=ˆEE^(gt)
ˆC2C2^=ˆB2B2^(gt)
DC=EB
Nên ∆ADC=∆AEB(g.c.g)
Hình 63
Ta có:
Và AB = MI; AC = IN; BC = MN
Nên ΔABC = ΔIMN
Hình 64 :
ΔPQR có:
Và QH = RP, HR = PQ, QR ( cạnh chung )
Nên ΔHQR = ΔPRQ
+ Hình 105: ΔABH và ΔACH cùng vuông tại H có:
BH = CH (gt)
AH cạnh chung
⇒ ΔABH = ΔACH (hai cạnh góc vuông)
+ Hình 106: Xét ΔDKE vuông tại K và ΔDKF vuông tại K có:
DK chung
⇒ ΔDKE và ΔDKF (cạnh góc vuông – góc nhọn kề).
+ Hình 107: Xét ΔABD vuông tại B và ΔACD vuông tại C có:
AD chung
⇒ ΔABD = ΔACD (cạnh huyền – góc nhọn )
+ Hình 108:
• ΔABD = ΔACD (cạnh huyền – góc nhọn) (giống hình 107).
⇒ AB = AC và BD = CD (hai cạnh tương ứng)
• Xét ΔABH vuông tại B và ΔACE vuông tại C có
Góc A chung
AB = AC
⇒ΔABH = ΔACE (cạnh góc vuông – góc nhọn kề).
• Xét ΔDBE vuông tại B và ΔDCH vuông tại C có:
BD = DC (chứng minh trên)
⇒ ΔDBE = ΔDCH (cạnh góc vuông – góc nhọn kề)