K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(y'=\frac{\frac{1}{x}x-\ln x}{x^2}+\frac{-\frac{1}{x}\left(x+\ln x\right)-\frac{1}{x}\left(x-\ln x\right)}{\left(1+\ln_{ }x\right)^2}=\frac{1-\ln x}{x^2}+\frac{-2}{x\left(1+\ln_{ }x\right)^2}\)

5 tháng 5 2016

xét hàm số y=ln(\(x+\sqrt{1+x^2}\))

Ta có

y'=\(\frac{1}{x+\sqrt{1+x^2}}\left(1+\frac{x}{\sqrt{1+x^2}}\right)=\frac{1}{x+\sqrt{1+x^2}}.\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=\frac{1}{\sqrt{1+x^2}}\)

18 tháng 8 2017

4 tháng 4 2017

Lời giải:

a) y' = = , y" = = = .

b) y' = = ;

y" = = = .

c) y' = ; y" = = = .

d) y' = 2cosx.(cosx)' = 2cosx.(-sinx) = - 2sinx.cosx = -sin2x,

y" = -(2x)'.cos2x = -2cos2x.



9 tháng 4 2017

a) Giả sử ∆x là số gia của số đối tại x0= 1. Ta có:

∆y = f(1 + ∆x) - f(1) = 7 + (1 + ∆x) - (1 + ∆x)2 - (7 + 1 - 12) = -(∆x)2 - ∆x ;

= - ∆x - 1 ; = (- ∆x - 1) = -1.

Vậy f'(1) = -1.

b) Giả sử ∆x là số gia của số đối tại x0= 2. Ta có:

∆y = f(2 + ∆x) - f(2) = (2 + ∆x)3 - 2(2 + ∆x) + 1 - (23 - 2.2 + 1) = (∆x)3 + 6(∆x)2 + 10∆x;

= (∆x)2 + 6∆x + 10; = [(∆x)2 + 6∆x + 10] = 10.

Vậy f'(2) = 10.


9 tháng 4 2017

a) Giả sử ∆x là số gia của số đối tại x0 = 1. Ta có:

∆y = f(1 + ∆x) - f(1) = (1 + ∆x)2 + (1 + ∆x) - (12+ 1) = 3∆x + (∆x)2;

= 3 + ∆x; = (3 + ∆x) = 3.

Vậy f'(1) = 3.

b) Giả sử ∆x là số gia của số đối tại x0 = 2. Ta có:

∆y = f(2 + ∆x) - f(2) = - = - ;

= - ; = - = - .

Vậy f'(2) = - .

c) Giả sử ∆x là số gia của số đối tại x0 = 0.Ta có:

∆y = f(∆x) - f(0) = - ( -1) = ;

= ; = = -2.

Vậy f'(0) = -2

9 tháng 4 2017

a) y' = 2x - = 2x - .

b) y' = = .

c) y' = = = = .

d) y' = = = = .

NV
30 tháng 4 2021

a. \(y'=\dfrac{-1}{\left(x-1\right)}\)

b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)

c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)

e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)

g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)

NV
30 tháng 4 2021

2.

a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)

b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)

c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)

d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)

e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)

f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)