K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

+ Hình 14a)

Ta có: MN // EF

⇒ Giải bài 7 trang 62 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

Mà DM = 9,5 ; DE = DM + ME = 9,5 + 28 = 37,5 ; MN = 8 ; EF = x

Giải bài 7 trang 62 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Hình 14b)

Ta có: A’B’ ⊥ AA’; AB ⊥ AA’ ⇒ A’B ‘ // AB

⇒ Giải bài 7 trang 62 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

Mà OA’ = 3 ; OA = 6 ; A’B’ = 4,2 ; AB = x

Giải bài 7 trang 62 SGK Toán 8 Tập 2 | Giải toán lớp 8

Áp dụng định lý Pytago trong tam giác OAB vuông tại A ta có:

OA2 + AB2 = OB2

Mà OA = 6; AB = x = 8,4 nên

Giải bài 7 trang 62 SGK Toán 8 Tập 2 | Giải toán lớp 8

26 tháng 2 2020

Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chúc bạn học tốt~~

26 tháng 2 2020

A B C K H I

a) Xét hai Δvuông HBC và ΔKCB

∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung

⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)

⇒ CH = BK

b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK

- Quảng cáo -

AK = AB – BK và AH = AC – CH ⇒ AK = AH

⇒ AK/AB = AH/AC ⇒ KH//BC

c) Kẻ đường cao AI của Δ ABC và xét Δ IAC

ΔHBC có ∠ACI = ∠BCH

⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b

Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)

\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)

\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)

21 tháng 9 2018

chứng tỏ cái gì

21 tháng 9 2018

Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng: 

- Chứng Tỏ Rằng J Hả Bạn ??????

2 tháng 9 2019

\(\left(\frac{1}{2}xy-1\right).\left(x^3-2x-6\right)=\frac{1}{2}xy.\left(x^3-2x-6\right)+\left(-1\right).\left(x^3-2x-6\right)\)

\(\frac{1}{2}xy.x^3+\frac{1}{2}xy.\left(-2x\right)+\frac{1}{2xy}.\left(-6\right)+\left(-1\right).x^3+\left(-1\right).\left(-2x\right)+\left(-1\right).\left(-6\right)\)

\(\frac{1}{2}x^{\left(1+3\right)}y-x^{\left(1+1\right)}y-3xy-x^3+2x+6\)

\(\frac{1}{2}x^4y-x^2y-3xy-x^3+2x+6\)

\(\frac{1}{2}x^4y-x^3-x^2y-3xy+2x+6\)

Chúc bạn học tốt !!!

Bài làm

Ta có: ( xy - 1 )( x3 - 2x - 6 )

= ( xy . x3 ) + [ xy . ( -2x ) ] + [ xy . ( - 6 ) ] + [ ( -1 ) . x3 ] + [ ( -1 ) . ( -2x ) ] + [ ( -1 ) . ( -6 ) ]  ( * chỗ này nếu thầnh thạo phép nnhân đa thức r thì k cần pk ghi đâu )

= x4y - 2x2y - 6xy - x3 + 2x + 6

# Học tốt #

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

26 tháng 5 2020

2, \(\widehat{ABC} + \widehat{BCA} = \widehat{BAC} = 90^0 ⇒ \widehat{BCA} = 90^0 - \widehat{ABC}\)

\(\widehat{ABC} +\widehat{ BAH} = \widehat{BAC} =90^0⇒\widehat{BAH} = 90^0 - \widehat{ABC}\)

\(\widehat{BCA} = \widehat{BAH}\)

XÉT \(\bigtriangleup\)HBA và\(\bigtriangleup\) HAC có :

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{BCA}=\widehat{BAH}\)

\(\bigtriangleup\)HBA ∼ \(\bigtriangleup\) HAC

b, Áp dụng hệ thức \(b^2=a.b'\) vào \(\bigtriangleup{ABC}\) vuông tại A , ta có :

\(AC^2=BC.CH\) (đpcm)

c, Áp dụng hệ thức \(h^2=b'.c'\) vào \(\bigtriangleup{ABC}\) vuông tại A, ta có :

\(AH^2=BH.CH\) (đpcm)

26 tháng 8 2017

Mik chịu thôi, bó tay.com.

26 tháng 8 2017

1 . 

Ta có AB = BC (gt)

Suy ra  ∆ABC cân

Nên ˆA1=ˆC1A1^=C1^  (1)

Lại có ˆA1=ˆA2A1^=A2^ (2) (vì AC là tia phân giác của ˆAA^)

Từ (1) và (2) suy ra ˆC1=ˆA2C1^=A2^

nên BC // AD (do ˆC1,ˆA2C1^,A2^ ở vị trí so le trong)

Vậy ABCD là hình thang