K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Ta có: BC = BH + HC = y + 32

Áp dụng hệ thức lượng A B 2 = B H . B C  trong tam giác vuông ABC ta có:

⇔ y − 18 = 0 y + 50 = 0 ⇔ y = 18 N y = − 50 L

Suy ra y = 18 => BC = 18 + 32 = 50

Áp dụng hệ thức lượng A C 2 = C H . B C ta có:

Vậy c = 40; y = 18

Đáp án cần chọn là: D

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

15 tháng 7 2019

mãi mãi mới có 1 bài đây nè 

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 9 - Học toán với OnlineMath

vào thóng kê 

k 3 phát như đã hứa nhé 

HHHHHHOOOOCJJJJ TOOOOTS @@

15 tháng 7 2019

(•‿•)  

9 tháng 1 2016

a)Với y=1 ta có hpt:

\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)

Vậy nghiệm của hpt là (2;1) khi m=4

b)đợi suy nghĩ

 

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
22 tháng 9 2019

Dat \(P=\frac{1}{x^2}+\frac{1}{y^2}\)

\(=\left(\frac{1}{x^2}+4\right)+\left(\frac{1}{y^2}+4\right)-8\ge\frac{4}{x}+\frac{4}{y}-8\ge\frac{16}{x+y}-8=8\)

Dau '=' xay ra khi \(x=y=\frac{1}{2}\)

Vay \(P_{min}=8\)khi \(x=y=\frac{1}{2}\)

22 tháng 9 2019

Áp dụng BĐT Cô - si:

\(\frac{1}{x^2}+\frac{1}{y^2}=\left(\frac{1}{x^2}+4\right)+\left(\frac{1}{y^2}+4\right)-8\ge\frac{4}{x}+\frac{4}{y}-8\)

\(\ge\frac{16}{x+y}-8=16-8=8\)

Vậy GTNN của bt là 8 \(\Leftrightarrow x=y\Leftrightarrow x=y=\frac{1}{2}\)

1) Cho  ABC có: \(\widehat{A}\)=60*; \(\widehat{B}\)=70*. Trên AB lấy điểm D sao cho AC+AD=BD+CD. Tính \(\widehat{ACD}\)2) Cho ABC nhọn: AB<AC. Các đường cao AD,BE,CF cắt tại H. Gọi M,N lần lượt là chân đường vuông góc hạ từ H xuống DE,EF, MN cắt AH tại K. Chứng minh: \(S_{DEF}=2S_{DEK}\)3) Cho ABC có: đường cao AD;DE vuông góc với AB tại E.;DF vuống góc với AC tại F. CMR: Nếu BE=CF thì ABC cân4) ChoABC có:...
Đọc tiếp

1) Cho  ABC có: \(\widehat{A}\)=60*; \(\widehat{B}\)=70*. Trên AB lấy điểm D sao cho AC+AD=BD+CD. Tính \(\widehat{ACD}\)

2) Cho ABC nhọn: AB<AC. Các đường cao AD,BE,CF cắt tại H. Gọi M,N lần lượt là chân đường vuông góc hạ từ H xuống DE,EF, MN cắt AH tại K. Chứng minh\(S_{DEF}=2S_{DEK}\)

3) Cho ABC có: đường cao AD;DE vuông góc với AB tại E.;DF vuống góc với AC tại F. CMR: Nếu BE=CF thì ABC cân

4) ChoABC có: số đo của các  \(\widehat{A}\),\(\widehat{B}\),\(\widehat{C}\)tỉ lệ với 0,8:0,5:0,5. D nằm trong ABC, \(\widehat{ABD}\)=40*; \(\widehat{ACD}\)=30*. Tính \(\widehat{ADB}\)

5) Cho ABC nhọn có: \(\widehat{A}\)=60*. Trên các cạnh AC,AB lần lượt lấy M,N sao cho \(\widehat{MBC}=\widehat{NCB}\)=30*. CMR

\(BN=MN=MC\ge\frac{1}{2}BC\)

6) Cho ABC vuông cân tại A có 2 đường trung tuyến BM, CN. P là hình chiếu của M trên CN. CM\(2BP^2=BC^2\)

0
3 tháng 10 2019

\(D=\frac{2}{\sqrt{xy}}:\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right)^2-\frac{x+y}{x-2\sqrt{xy}+y}\left(ĐKXĐ:x\ge0,y\ge0,x\ne y\right)\)

\(\Leftrightarrow D=\frac{2}{\sqrt{xy}}:\left(\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}\right)^2-\frac{x+y}{\sqrt{x}}\)

\(\Leftrightarrow D=\frac{2}{\sqrt{xy}}.\frac{xy}{\left(\sqrt{x}-\sqrt{y}\right)^2}-\frac{x+y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

\(\Leftrightarrow D=\frac{2\sqrt{xy}-x-y}{\left(\sqrt{x}-\sqrt{y}\right)^2}=\frac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)^2}=-1\)

=> ko phụ thuộc x