K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

\(\left[\left(x-2y\right)\left(x-7y\right)-x^2+4y^2\right]:\left(x-2y\right)=18\left(x\ne2y\right)\)

\(\Leftrightarrow\left[\left(x-2y\right)\left(x-7y\right)-\left(x-2y\right)\left(x+2y\right)\right]:\left(x-2y\right)=18\)

\(\Leftrightarrow\left(x-7y\right)-\left(x+2y\right)=18\)

\(\Leftrightarrow-9y=18\)

\(\Leftrightarrow y=-2\)

Vậy phương trình có nghiệm với mọi \(x\ne-4\) và \(y=-2\)

 

2 tháng 9 2016

[(x - 2y)(x - 7y) - x2 + 4y2] : (x - 2y) = 18 (1)

[(x - 2y)(x - 7y) - (x - 2y)(x + 2y)] : (x - 2y) = 18

(x - 2y)(x - 7y - x - 2y) : (x - 2y) = 18

- 9y = 18

y = - 18 : 9

y = -2

=> x = 7

29 tháng 3 2018

\(\Leftrightarrow\dfrac{\left(x-2y\right)\left(x-7y\right)-\left(x-2y\right)\left(x+2y\right)}{x-2y}=18\)

\(\left\{{}\begin{matrix}x\ne2y\\\left(x-7y\right)-\left(x+2y\right)=18\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne2y\\9y=-18\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(\forall x\ne-4;-2\right)\)

6 tháng 8 2020

\(x^2+2y^2+4x-4y-2xy+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+y^2+1=0\)

\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4+y^2+1=0\)

\(\Leftrightarrow\left(x-y+2\right)^2+y^2+1=0\)

Đến đây thấy pt vô nghiệm ._.

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)

1 tháng 8 2019

https://olm.vn/hoi-dap/detail/108858274535.html

Bài tương tự gưi link ib

13 tháng 10 2020

\(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\)

<=> \(\hept{\begin{cases}x^3+8y^3=0\left(1\right)\\x^3-8y^3=16\left(2\right)\end{cases}}\)

Lấy (1) + (2) theo vế

=> 2x3 = 16

=> x3 = 8 = 23

=> x = 2

Thế x = 2 vào (1)

=> 23 + 8y3 = 0

=> 8 + 8y3 = 0

=> 8y3 = -8

=> y3 = -1 = (-1)3

=> y = -1

Vậy \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

29 tháng 8 2021

cái đầu tiên là x2+2y2 nha

29 tháng 8 2021

a)

\(x+2y=5\Leftrightarrow x=5-2y\)

Thay vào ta được

\(M=\left(5-2y\right)^2+2y^2=25-20y+4y^2+y^2=6y^2-20y+25=6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{25}{3}=6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\)

Mà \(6\left(y-\frac{5}{3}\right)^2\ge0\forall y\Leftrightarrow6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\ge\frac{25}{3}\)

Dấu '' = '' xảy ra \(\Leftrightarrow y=\frac{5}{3}\)

\(\Rightarrow x=\frac{5}{3}\)

\(\Rightarrow MinM=\frac{25}{3}\Leftrightarrow x=y=\frac{5}{3}\)