Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt biểu thức trên là A
Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)
\(=x^2-x-2-x^2+x+6=4\)
Vậy biểu thức A không phụ thuộc vào biến x (đpcm)
Bài 2:
a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)
\(\Leftrightarrow-2x-8=15\)
\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)
Vậy...................................................................................
câu b) tương tự câu a) thôi,bạn tự làm đi nhé
a, <=> x.(x-3)+5.(x-3) = 0
<=> (x-3).(x+5) = 0
<=> x-3=0 hoặc x+5=0
<=> x=3 hoặc x=-5
Vậy ........
b, ĐKXĐ : x khác 1 và 2
pt <=> x^2-1 = 0
<=> (x-1).(x+1) = 0
<=> x-1 = 0 hoặc x+1 = 0
<=> x=-1 ( vì x khác 1 và 2 )
Vậy x=-1
k mk nha
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
a) Ta có: (x + 1)(x + 3)(x + 5)(x + 7) + 15 = 0
<=> (x2 + 8x + 7)(x2 + 8x + 15) + 15 = 0
<=> (x2 + 8x + 7)2 + 8(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x +7 )2 + 3(x2 + 8x + 7) + 5(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x + 7 + 3)(x2 + 8x + 7 +5) = 0
<=> (x2 + 8x + 10)(x2 + 8x + 12) = 0
<=> \(\orbr{\begin{cases}x^2+8x+10=0\\x^2+8x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2-6=0\\x^2+6x+2x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2=6\left(1\right)\\\left(x+6\right)\left(x+2\right)=0\left(2\right)\end{cases}}\)
Giải (1) <=> \(\orbr{\begin{cases}x+4=\sqrt{6}\\x+4=-\sqrt{6}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\sqrt{6}-4\\x=-\sqrt{6}-4\end{cases}}\)
Giải (2) <=> \(\orbr{\begin{cases}x=-6\\x=-2\end{cases}}\)
b) Ta có: (x2 + x)(x2 + x + 1) = 6
<=> (x2 + x)2 + (x2 + x) - 6 = 0
<=> (x2 + x)2 + 3(x2 + x) - 2(x2 + x) - 6 = 0
<=> (x2 + x + 3)(x2 + x - 2) = 0
<=> x2 + 2x - x - 2 = 0 (vì x2 + x + 3 = (x + 1/2)^2 + 11/4 > 0)
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
a) \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-4=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
b) \(\left(2x-3\right)^2=\left(x-5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(2x-3+x-5\right)\left(2x-3-x+5\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{8}{3}\end{array}\right.\)
c) \(x^2\left(x-1\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\end{array}\right.\)
a) Ta có : x3 - x = 0
=> x(x2 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)
b) x2 + 4x = 0
=> x(x + 4) = 0
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy \(x\in\left\{0;-4\right\}\)
c) 9x2 - 1 = 0
=> 9x2 = 1
=> x2 = \(\frac{1}{9}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{3};-\frac{1}{3}\right\}\)
d) 5x2 - 10x + 5 = 0
=> 5x2 - 5x - 5x + 5 = 0
=> 5x(x - 1) - 5(x - 1) = 0
=> 5(x - 1)2 = 0
=> (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
e) x2 + 6x + 5 = 0
=> x2 + 6x + 9 - 4 = 0
=> (x + 3)2 = 4
=> \(\orbr{\begin{cases}x+3=2\\x+3=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)
Vậy \(x\in\left\{-1;-5\right\}\)
\(\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+x+2x+2-x^2-5x+3x+15=0\)
\(\Leftrightarrow x+17=0\)
\(\Leftrightarrow x=-17\)
(x+2)(x+1)-(x-3)(x+5)=0
\(\Leftrightarrow\) (x2+x+2x+2)-(x2+5x-3x-15)=0
\(\Leftrightarrow\)x2+x+2x+2-x2-5x+3x+15=0
\(\Leftrightarrow\)x+17=0
\(\Rightarrow\)x=-17
a) (2x - 3)2 = (x + 5)2
=> 4x2 - 12x + 9 = x2 + 10x + 25
=> 4x2 - 12x + 9 - (x2 + 10x + 25) = 0
=> 3x2 - 22x - 16 = 0
=> 3x2 - 24x + 2x - 16 = 0
=> 3x(x - 8) + 2(x - 8) = 0
=> (3x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=8\end{cases}}\)
b) x2(x - 1) - 4x2 + 8x - 4 = 0
=> x2(x - 1) - (2x - 2)2 = 0
=> x2(x - 1) - [2(x- 1)]2 = 0
=> x2(x - 1) - 4(x - 1)2 = 0
=> (x - 1)(x2 - 4(x - 1) = 0
=> (x - 1)(x2 - 4x + 4) = 0
=> (x - 1)(x - 2)2 = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
c) x2 + 7x + 12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 4)(x + 3) = 0
=> \(\orbr{\begin{cases}x+4=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-3\end{cases}}\)
d) x2 + 3x - 18 = 0
=> x2 + 6x - 3x - 18 = 0
=> x(x + 6) - 3(x + 6) = 0
=> (x - 3)(x + 6) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
e) x(x + 6) - 7x - 42 = 0
=> x(x + 6) - 7(x + 6) = 0
=> (x - 7)(x + 6) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
1. ( 2x - 3 )2 = ( x + 5 )2
<=> ( 2x - 3 )2 - ( x + 5 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 5 ) ][ ( 2x - 3 ) + ( x + 5 ) ] = 0
<=> ( 2x - 3 - x - 5 )( 2x - 3 + x + 5 ) = 0
<=> ( x - 8 )( 3x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
2. x2( x - 1 ) - 4x2 + 8x - 4 = 0
<=> x2( x - 1 ) - ( 4x2 - 8x + 4 ) = 0
<=> x2( x - 1 ) - 4( x2 - 2x + 1 ) = 0
<=> x2( x - 1 ) - 4( x - 1 )2 = 0
<=> ( x - 1 )[ x2 - 4( x - 1 ) ] = 0
<=> ( x - 1 )( x2 - 4x + 4 ) = 0
<=> ( x - 1 )( x - 2 )2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
3. x2 + 7x + 12 = 0
<=> x2 + 3x + 4x + 12 = 0
<=> x( x + 3 ) + 4( x + 3 ) = 0
<=> ( x + 3 )( x + 4 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
4. x2 + 3x - 18 = 0
<=> x2 - 3x + 6x - 18 = 0
<=> x( x - 3 ) + 6( x - 3 ) = 0
<=> ( x - 3 )( x + 6 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
5. x( x + 6 ) - 7x - 42 = 0
<=> x( x + 6 ) - 7( x + 6 ) = 0
<=> ( x + 6 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}\)
\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\left(x+1\right)x=0\)
\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....
\(x\left(x-5\right)^2-4x+20=0\)
\(x\left(x-5\right)^2-4\left(x-5\right)=0\)
\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)
\(\left(x-5\right)\left(x^2-5x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........
\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)
\(\left(x+6\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....
\(x^3-5x^2+x-5=0\)
\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........
\(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^3+10x\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............
nhớ chọn mk nha
a) (3x – 5)2 – (x +1 )2 = (3x – 5 – x – 1)(3x – 5 + x + 1)
= (2x – 6)(4x – 4) = 8(x – 1)(x – 3)
Vậy (x – 1)(x – 3) = 0 ⇒ x - 1 = 0 hoặc x - 3 = 0
⇒ x = 1hoặc x = 3