Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)
\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)
\(\frac{x+4}{2011}+1+\frac{x+3}{2012}+1=\frac{x+2}{2013}+1+\frac{x+1}{2014}+1\)
\(\frac{x+4}{2011}+\frac{2011}{2011}+\frac{x+3}{2012}+\frac{2012}{2012}=\frac{x+2}{2013}+\frac{2013}{2013}+\frac{x+1}{2014}+\frac{2014}{2014}\)
\(\frac{x+2015}{2011}+\frac{x+2015}{2012}=\frac{x+2015}{2013}+\frac{x+2015}{2014}\)
\(\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)
\(\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)nên:
x+2015=0
x=-2015
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Rightarrow2^x\cdot1+2^x\cdot2^1+2^x\cdot2^2+2^x\cdot2^3=480\)
\(\Rightarrow2^x\left(1+2^1+2^2+2^3\right)=480\)
\(\Rightarrow2^x\cdot15=480\)
\(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2012}{1}+\frac{2011}{2}+...+\frac{2}{2011}+\frac{1}{2012}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\left(\frac{2011}{2}+1\right)+...+\left(\frac{2}{2011}+1\right)+\left(\frac{1}{2012}+1\right)+1\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2013}{2}+...+\frac{2013}{2011}+\frac{2013}{2012}+\frac{2013}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=2013\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}\right)\)
\(\Rightarrow x=2013.\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}\)
\(\Rightarrow x=2013\)
Vậy \(x=2013\)
x+1/2014 + x+2/2013 = x+3/2012 + x+4/2011
=> x+1/2014 + 1 + x+2/2013 + 1 = x+3/2012 + 1 + x+4/2011 + 1
=> x+2015/2014 + x+2015/2013 = x+2015/2012 + x+2015/2011
=> x+2015/2012 + x+2015/2011 - x+2015/2013 - x+2015/2014 = 0
=> (x + 2015).(1/2012 + 1/2011 - 1/2013 - 1/2014) = 0
Vì 1/2011 > 1/2013; 1/2012 > 1/2014
=> 1/2012 + 1/2011 - 1/2013 - 1/2014 khác 0
=> x + 2015 = 0
=> x = -2015