K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Đặt ( n+3 ; 2n+5) = d

=> \(n+3⋮d\Rightarrow2.\left(n+3\right)⋮d\)(1)

=> \(2n+5⋮d\)(2)

Từ (1) và (2) => \(2.\left(n+3\right)-2n+5⋮d\)

=>\(2n+6-2n-5⋮d\)

=> \(1⋮d\)

vậy UCLN(n+3; 2n+5)=1

16 tháng 11 2017

Gọi d là ước chung của n + 7 và 2n + 3

Ta có: n + 7 ⋮ d;  2n + 3d.

Ta có: 2(n + 7) – 2n – 3d

=> 11d

Vậy d {1; 11}

18 tháng 5 2017

Gọi d là ước chung của n+3 và 2n+5

Ta có n+3\(⋮\) d và 2n+5 \(⋮\)d

Suy ra (2n+6)-(2n+5)\(⋮\) d \(\Rightarrow\) 1\(⋮\)d

Vậy d=1

17 tháng 12 2017

Gọi d là ước chung của n + 3 và 2n + 5.

Ta có n + 3 ⋮ d và 2n + 5 ⋮ d.

Suy ra (2n + 6) - (2n + 5) ⋮ d

1 ⋮ d.

Vậy d = 1.

31 tháng 10 2015

 gọi a là UC của n+3 và 2n+5 
=> a là ước của 2(n+3) = 2n+6 = 2n+5 + 1 
mà a là ước của 2n+5 => a là ước của 1 => a = 1 

31 tháng 10 2015

Vũ An Tuấn copy 

nhìn là biết bởi ở đây chỉ có 1 bài mà còn bn thì...............

21 tháng 9 2021

1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N.  Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau

2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5

22 tháng 9 2021

Quá dễ

21 tháng 11 2014

3a)

1+2+3+4+5+...+n=231

=> (1+n).n:2=231

(1+n).n=231.2

(1+n).n=462

(1+n).n=2.3.7.11

(1+n).n=(2.11).(3.7)

(1+n).n=22.21

=>n=21

2 tháng 11 2016

gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1   nhớ kết bạn với mình nhé