K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

10 tháng 9 2019

Chọn D

8 tháng 7 2019

Đáp án A

+)byijk55YIBUh.png(8VOrykOxTQq1.png)

Điều kiện:gE3rXpDxO3A7.png

+)ifeVAPgop9dP.png

Đặt:70dXxglFb3MD.pngedN1ZXDiPbXz.png

gu7jETWKA50V.png

KJuZBqdeJAV7.pngGk0hNNOG7zJ6.png

Đặtxbed49PlxpVj.png

VZWgBzZoiEGj.png.B8EKfcdrURqt.png

Bảng biến thiên

+) WaoJKjEXpOD4.png

Để phương trình có hai nghiệm phân biệtSF4O5R53xWxb.png

Do đó để phương trình có hai nghiệm phân biệt thì phương trìnhVKyat1RGRwX8.pngcó nghiệmBZmZIACDwBXI.png

Từ bảng biến thiênVd7pY3vHJmFz.png.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

15 tháng 2 2017

Chọn đáp án D.

khi đó yêu cầu bài toán trở thành phương trình

f t = 3 t + m

⇔ m = g t = f t - 3 t  có nghiệm  t ∈ ( 0 ; 1 ] . Có

Do đó

Vậy  - 4 ≤ m < 1

Tổng các phần tử của tập S bằng -10.

3 tháng 5 2017

Đáp án D.

Phương trình tương đương với

Đặt 2 x - 1 2 x = t → 4 x + 1 4 x = t 2 + 2 . Xét hàm số  t ( x ) = 2 x - 1 2 x  trên 0 ; 1 .

Đạo hàm t ' ( x ) = 2 x . ln   2 + ln   2 2 x > 0 ,   ∀ x ∈ 0 ; 1 ⇒  Hàm số t ( x )  luôn đồng biến trên  0 ; 1 . Suy ra min x ∈ 0 ; 1 t ( x ) = t ( 0 ) = 0  và  max x ∈ 0 ; 1 t ( x ) = t ( 1 ) = 3 2 . Như vậy t ∈ 0 ; 3 2 .

Phương trình (1) có dạng:

Phương trình (1) có nghiệm  t ∈ 0 ; 1 ⇔  phương trình ẩn t có nghiệm  t ∈ 0 ; 3 2 ⇔ 0 ≤ m - 1 ≤ 3 2 ⇔ 1 ≤ m ≤ 5 2 . Mà m ∈ ℤ nên m ∈ 1 ; 2  . Tổng tất cả các giá trị nguyên của m bằng 3.

13 tháng 8 2017

Chọn đáp án C.

Đặt t = sin x ∈ ( 0 ; 1 ] ,   ∀ x ∈ 0 ; π  

Suy ra  f sin x = f t ∈ [ - 1 ; 1 ) ,   ∀ t ∈ ( 0 ; 1 ]

Vậy phương trình có nghiệm  x ∈ 0 ; π ⇔ - 1 < m ≤ 3

20 tháng 7 2018

Chọn đáp án C.

Phương trình trở thành:  f t = m ( 1 )

Ta cần tìm m để (1) có nghiệm thuộc khoảng  ( 0 ; 1 ]

⇔ - 4 ≤ m ≤ - 2