Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(3x^2-x-5=mx-1\Rightarrow3x^2-\left(m+1\right)x-4=0\)
\(ac=-12< 0\Rightarrow\) phương trình luôn có 2 nghiệm hay (d) luôn cắt (P) tại 2 điểm phân biệt
Theo định lý Viet: \(x_A+x_B=\frac{m+1}{3}\)
\(\Rightarrow y_A+y_B=mx_A-1+mx_B-1=m\left(x_A+x_B\right)-2=\frac{m^2+m-6}{3}\)
Mà tọa độ trung điểm I của AB có dạng: \(\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}=\frac{m+1}{6}\\y_I=\frac{y_A+y_B}{2}=\frac{m^2+m-6}{6}\end{matrix}\right.\)
\(\Rightarrow\frac{m^2+m-6}{6}=\frac{m+1}{6}-1\)
\(\Rightarrow m^2=1\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)
\(\Rightarrow a^2+b^2\ge2\)
Đẳng thức xảy ra khi \(a=b=1\)
Bài 3:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{2}=2\)
Đẳng thức xảy ra khi \(a=b=1\)
Biến đổi tương đương:
\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)
\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Lê Quynh Nga - Toán lớp 10 | Học trực tuyến
a) Với \(x\in\left[0;1\right]\) => x - 2 < 0 => |x - 2| = - (x -2)
Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\) (*) với mọi \(x\in\left[0;1\right]\)
+) Xét m - 1 > 0 <=> m > 1
(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2
Kết hợp điều kiện m > 1 =>1 < m \(\le\) 2
+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn
+) Xét m - 1 < 0 <=> m < 1
(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1
Kết hợp các trường hợp : Với 0 \(\le\)m \(\le\) 2 thì .....
b) Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)
Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => xo < 2 => |xo - 2| = - (xo - 2)
xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\)
+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < xo < 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\)
Giải (a) <=> 1 < m < 2
Giải (b) <=> m < 1 hoặc m > 4/3
Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2
+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí
Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)
a/ - Với \(x\ge\frac{3}{5}\) BPT tương đương:
\(2x^2-5x+3< 0\Leftrightarrow1< x< \frac{3}{2}\)
- Với \(x< \frac{3}{5}\) BPT tương đương:
\(x^2+5x-3< 0\Leftrightarrow\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}1< x< \frac{3}{2}\\\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\end{matrix}\right.\)
b/ -Với \(x< 8\) BPT vô nghiệm
- Với \(x\ge8\) hai vế ko âm, bình phương:
\(\left(x-8\right)^2>\left(x^2+3x-4\right)^2\)
\(\Leftrightarrow\left(x^2+3x-4\right)^2-\left(x-8\right)^2< 0\)
\(\Leftrightarrow\left(x^2+4x-12\right)\left(x^2-2x+4\right)< 0\)
\(\Leftrightarrow x^2+4x-12< 0\Rightarrow-6< x< 2\) (ktm)
Vậy BPT đã cho vô nghiệm
Xét phương trình hoành độ giao điểm -3x2 + bx – 3 = 0
Để đồ thị cắt trục hoành tại hai điểm phân biệt thì phương trình có hai nghiệm phân biệt ha:
Chọn A.