Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác
Lời giải: TXĐ : D = R
Ta có R
Phương trình
Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác
Khi đó
Gọi ; là ba điểm cực trị. Tam giác ABC cân tại A.
Trung điểm H của BC là
Và
Diện tích tam giác ABC là
Mà R suy ra
Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0
Hàm số có cực trị khi và chỉ khi phương trình
f ' x = m - 1 x 2 - m + 3 x + 3 - m = 0 có hai nghiệm phân biệt
Đặt x = t + 2, phương trình f ' (x) = 0 trở thành
m - 1 t 2 + 3 m - 7 t + m - 7 = 0 *
Phương trình → có hai nghiệm x 1 , x 2 thỏa x 1 < 2 < x 2 khi và chỉ khi phương trình (*) có hai nghiệm trái dấu m - 7 m - 1 < 0 ⇔ 1 < m < 7
Đáp án C
Để đồ thị hàm số có 2 điểm cực trị thì
Khi đó, do a = 1 3 > 0 nên hàm số y = 1 3 x 3 - m x 2 + m + 2 x có cực trị và giá trị của hàm số tại các điểm cực đại, điểm cực tiểu nhận giá trị dương . Đồ thị hàm số cắt trục hoành tại 1 điểm duy nhất là x = 0 1 và hai cực trị x 1 ; x 2 x 1 < x 1 thỏa mãn: 0 < x 1 < x 2 2
Ta có:
hoặc là vô nghiệm hoặc là có nghiệm kép x = 0
Kết hợp điều kiện ta có:
m ∈ 2 - 2 7 3 ; - 1 ∪ 2 ; 2 + 2 7 3
Chọn: A