K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Giải bài tập Toán 9 | Để học tốt Toán 9

Vì x ≥ 0 nên bình phương hai vế ta được:

2x < 16 ⇔ x < 8

Vậy 0 ≤ x < 8

5 tháng 6 2018

a/\(\sqrt{x}=7\)

\(\Leftrightarrow x=49\)

b/\(\Leftrightarrow x< 4\)(do x>0)

\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)

c/\(2x< 16\)

\(\Leftrightarrow x< 8\)

\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)

5 tháng 6 2018

a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)

b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)

c) \(\sqrt{2x}< 4\)

Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)

\(\Leftrightarrow2x< 16\)

\(\Leftrightarrow x< 8\left(x\ge0\right)\)

3 tháng 4 2017

Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

9 tháng 8 2016

a)\(\sqrt{x}>2\Leftrightarrow\sqrt{x^2}>2^2\Leftrightarrow x>4\)

\(\sqrt{x}< 1\Leftrightarrow\sqrt{x^2}< 1^2\Leftrightarrow x< 1\)

24 tháng 8 2016

a) = 225 

b)  49

c) = 1 

d) 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 

k nha

a) \(\sqrt{x}=15\)

=> x = 152

 => x = 225

b) \(2\sqrt{x}=14\)

<=> \(\sqrt{x}=7\)

=> x = 72

=> x = 49

c) \(\sqrt{x}< \sqrt{2}\)

<=> x < 2

mà \(x\ge0\)

=> x= {0;1}

d) \(\sqrt{2x}< 4\)

=> 2x < 16

<=> x < 8

mà \(x\ge0\)

=> x = {0;1;2;3;4;5;6;7}

ok mk nhé!!!!!! 53654645756876969251353253434645655435436464556756252345345634

9 tháng 8 2016

a) \(\sqrt{x}>1\Leftrightarrow x>1\)

b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)

Vì x không âm nên x={0;1;2;3;4;5;6;7;8}

9 tháng 8 2016

a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)

b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)

16 tháng 8 2018

\(2\sqrt{x}=14\Rightarrow\sqrt{x}=7\) \(\Rightarrow x=49\)

\(\sqrt{x}< \sqrt{2}\Rightarrow x< 2\) Mà x không âm \(\Rightarrow x\in\left(0;1\right)\)

\(\sqrt{2x}< 4\Rightarrow2x< 16\) \(\Rightarrow x< 8\) mà x không âm \(\Rightarrow x\in\left(0;1;2;3;4;5;6;7\right)\)

20 tháng 7 2018

phép toán vô lí

ko có gt nào thỏa mãn

20 tháng 5 2017

Ta có:

\(\sqrt{x}< \sqrt{2}\)

\(\Leftrightarrow x< 2\)

Vì x nguyên không âm nên 

\(\Rightarrow1\le x< 2\)

\(\Rightarrow x=1\)

21 tháng 5 2017

\(\sqrt{x}\)<\(\sqrt{2}\)

<=> x<2

vì x nguyên không âm nên

\(\Rightarrow\)0<=x<2

\(\Rightarrow\)x=0;x=1

mà x lớn nhất nên x=1

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)