K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Thương của 1 số vô tỉ và một số hữu tỉ là một số vô tỉ nghe bạn.

Lấy ví dụ biết liền.

Nhớ k cho mình nhé! Thank you!!!

31 tháng 12 2017

Gọi a là số vô tỉ, b là số hữu tỉ khác 0.

Tích ab là số vô tỉ vì nếu ab = b' là số hữu tỉ thì a = b'/b là thương của hai số hữu tỉ

suy ra a là số hữu tỉ, mâu thuẫn với a là số vô tỉ.

Vậy tích của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ.

11 tháng 5 2019

Gọi a là số vô tỉ, b là số hữu tỉ.

Ta có a/b là số vô tỉ vì ngược lại nếu a/b = b' là số hữu tỉ thì a = b . b'

Khi đó, b là số hữu tỉ và b’là số hữu tỉ nên a là số hữu tỉ ( tích của hai số hữu tỉ là số hữu tỉ); trái với giả thiết a là số vô tỉ.

Do đó, thương của một số vô tỉ và một số hữu tỉ là số vô tỉ.

9 tháng 9 2016

Bài này hơi khó

14 tháng 10 2016

bạn lấy ví dụ ra là bít

9 tháng 11 2015

ko bik làm thông cảm nha( OLM đừng xóa )

10 tháng 11 2015

a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ

=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn

Vậy tổgg só là số vô tỉ

10 tháng 11 2015

là số vô tỉ

cô Loan viết xong không xem lại đề

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.

Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$

$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)

Điều này vô lý do $y$ là số vô tỉ.

$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.

Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.

-------------------------------

Chứng minh $xy$ vô tỉ.

Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$

$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.

-------------------------------

CM $\frac{x}{y}$ vô tỉ.

Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$

$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.

8 tháng 11 2016

1)

Lũy thừa bậc n của x , kí hiệu xn là tích n thừa số x , trong đó x là số tự nhiên lớn hơn 1 .

2)

Tỉ số của hai số hữa tỉ a và b là a : b ( hay \(\frac{a}{b}\) ) trong đó b khác 0 .

Ví dụ : Tỉ số giữa 5 và 7 là \(\frac{5}{7}\)