K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(M=a^2-ab+b^2+ab\)

\(M=a^2+b^2\)

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).

b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)

Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).

Câu 2:

a) Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Rightarrow x^4+3x^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)

\(x^2\ge0\forall x\)

nên \(x^2+3\ge3>0\forall x\)

Do đó: \(x^2=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0

b)\(B=\left(x^4+5\right)^2\)

Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+5\ge5\forall x\)

\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)

Dấu '=' xảy ra khi

\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0

c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y+2\right)^2\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2

Câu 3:

a) \(A=5-3\left(2x-1\right)^2\)

Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi

\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)

b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\)\(\frac{1}{3}\) khi x=1

c) \(C=\frac{x^2+8}{x^2+2}\)

Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)

\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)

Dấu '=' xảy ra khi

\(x^2=0\Leftrightarrow x=0\)

Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

10 tháng 6 2016

1)  

Tìm Max : Viết A dưới dạng : \(A=\frac{-\left(x^2-2x+1\right)+2x^2+4}{x^2+2}=-\frac{\left(x-1\right)^2}{x^2+2}+2\le2\)với mọi x

\(\Rightarrow MaxA=2\Leftrightarrow x=1\)

Tìm Min : Viết A dưới dạng : \(A=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+x^2+2}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\)với mọi x

\(\Rightarrow MinA=\frac{1}{2}\Leftrightarrow x=-2\)

2) Biểu diễn M dưới dạng : 

\(M=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab=\left(a^2-2ab+b^2\right)+\left(a^3-3a^2b+3ab^2-b^3\right)=\left(a-b\right)^2+\left(a-b\right)^3\)

Thay a-b = 1 vào M được : \(M=2\)

3) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-24=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)Đặt \(t=x^2+5x+5\)thay vào biểu thức trên được \(\left(t-1\right)\left(t+1\right)-24=t^2-25=\left(t-5\right)\left(t+5\right)=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

Vậy kết quả phân tích thành nhân tử là : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=x\left(x+5\right)\left(x^2+5x+10\right)\)

4) 

a) \(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\Leftrightarrow1+2\left(ab+bc+ac\right)=1\Leftrightarrow ab+bc+ac=0\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\Rightarrow xy+yz+zx=k^2ab+k^2bc+k^2ac=k^2\left(ab+bc+ac\right)=0\)

Vậy xy + yz + zx = 0 (đpcm)

b) Theo bài ra ta có :  \(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^2+b^2+c^2=1\left(2\right)\\a^3+b^3+c^3=1\left(3\right)\end{cases}}\)

Từ (1) và  (3) suy ra được :  \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)^3=0\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Do đó : \(a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Nếu \(a+b=0\Rightarrow c=1\Rightarrow a^2+b^2=0\)

Đến đây ta có hệ : \(\hept{\begin{cases}a+b=0\\a^2+b^2=0\\a^3+b^3=0\end{cases}\Leftrightarrow a=b=0}\)

Làm tương tự với \(b+c=0\)và \(c+a=0\)

Kết luận tập nghiệm : \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;0\right);\left(1;0;0\right)\)

10 tháng 6 2016

Lời giải : Ta có x + y - 3 = xy(1 - 2xy) 
<=> xy + 3 = x4 + y4 + 2x2y2 
<=> xy + 3 = (x2 + y2)2 (1). 
Do (x2 - y2)2 ≥ 0 với mọi x, y, dễ dàng suy ra (x2 + y2)2 ≥ 4(xy)2 với mọi x, y (2). 
Từ (1) và (2) ta có : 
xy + 3 ≥ 4(xy)2 <=> 4t2 - t - 3 ≤ 0 (với t = xy) 
<=> (t - 1)(4t + 3) ≤ 0 
Vậy : t = xy đạt GTLN bằng 1 

13 tháng 11 2017

B=\(\dfrac{1}{\left|x-2\right|+3}\)

do \(\left|x-2\right|\ge0\forall x\)

=> \(\left|x-2\right|+3\ge3\)

=> \(\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)

=> B \(\le\dfrac{1}{3}\)

GTLN của B =\(\dfrac{1}{3}\)

khi x-2=0

=> x=2

vậy GTLN của A=\(\dfrac{1}{3}\) khi x=2

21 tháng 8 2017

\(A=\left|x+1\right|-2\)

\(\left|x+1\right|\ge0\Rightarrow\left|x+1\right|-2\ge-2\)

Dấu "=" xảy ra khi:

\(x=-1\)

\(B=\left|x-1\right|+\left|3-x\right|\)

\(B\ge\left|x-1+3-x\right|\)

\(B\ge2\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\Rightarrow x\ge1\\3-x\ge0\Rightarrow x\le3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\3-x< 0\Rightarrow x>3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow1\le x\le3\)

Tương tự

8 tháng 5 2019

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

8 tháng 5 2019

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)

20 tháng 3 2018

\(a)\) Để A đạt GTLN thì \(6-x>0\) và đạt GTNN 

\(\Rightarrow\)\(6-x=1\)

\(\Rightarrow\)\(x=5\)

Suy ra : \(A=\frac{2}{6-x}=\frac{2}{6-5}=\frac{2}{1}=2\)

Vậy \(A_{max}=2\) khi \(x=5\)

Chúc bạn học tốt ~