Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tự làm
b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)
để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)
c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)
để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)
d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)
\(\Leftrightarrow0m=-3\)(vô lí)
e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))
để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)
\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)
với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104
với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4
\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2
b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0
\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0
\Rightarrow ∫m<8m>−2∫m>−2m<8
\Rightarrow -2<m<8
\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}
c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2
hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5
\Leftrightarrow m+2 = 1 ; 5
m+2 = 1 \Rightarrow m = -1
m+2 = 5 \Rightarrow m =3
a) Thay m vào phương trình, ta có:
\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)
Thay giá trị đã có của x vào phương trình
\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)
\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)
Thay giá trị của y vào phương trình:
\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)
\(\Rightarrow x=13-5\sqrt{2}\)
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^
Ta có x + y = 2 m x − y = m ⇒ x + mx = 2 + m ⇒ x(m + 1) = m + 2
Nếu m = −1 ⇒ 0.x = 1 (vô lí)
Nếu m ≠ 1 ⇒ x = m + 2 m + 1 = 1 + 1 m + 1
Để hệ phương trình đã cho có nghiệm nguyên duy nhất ⇒ x nguyên
⇒ m + 1 = ± 1 ⇒ m = 0; m = −2
Với m = 0 ⇒ x = 2 y = 0 (thỏa mãn)
Với m = −2 ⇒ x = 0 y = 2 (thỏa mãn)
Đáp án: C