K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a)

ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)

ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0

Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0

\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)

\(-1< m< 0\Rightarrow T< 0\)

\(-1< m< 1\Rightarrow M< 0\)

Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)

b)

M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)

Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn

=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm

16 tháng 3 2017

Đáp án: A

5 tháng 4 2017

a) \(x^2-2x+m^2+m+3=0\)
    Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
                                                        \(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
  DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.

b)

(1) a khác 0: \(m^2+m+3>0\forall m\)

(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)

\(=16m^4+4m^3+13m^2-8m+4>0\) 

(3) \(\dfrac{c}{a}>0\) => m > 0

(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý

Kết luận không có m thỏa mãn đk đầu bài

 

 

 

 

 

14 tháng 1 2020

để pt có 2 nghiệm phân biệt thì: đenta > 0 

mà ddeenta = m2 - 6m - 7 > 0  

giải ra ta đc: m<-1 hay m>7 (1)

áp dụng hệ thức vi-et đc x1 + x2 = m-1  và x1.x2= m+2 

kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3

bđt trên (=) (x12+x22)/x12.x22  - 1  > 0 

thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2   và m<-7/16

kết hợp vs (1) =) m<-1 và m khác -2

NV
7 tháng 5 2021

Pt đã cho có 2 nghiệm pb khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)

\(\Leftrightarrow m^2+4m+2>0\)

\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)

7 tháng 5 2021

undefined