Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)
\(\Leftrightarrow-3< x< 7\)
\(\Rightarrow C=\left(-3;7\right)\)
\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)
\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)
\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)
4.
Hình như cái đề chẳng liên quan gì đến đáp án hết :)
1.
\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)
2.
\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)
Rất tiếc tập này không thể liệt kê được (có vô số phần tử)
5.
(x^2 -1)(x^2 +9) <0
(x+3)(x+1)(x-1)(x-3)<0
x \(\in\)(-3;-1)U(1;3)
1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)
Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Chọn D. \(P\le\frac{1}{2}\)
2. a) Áp dụng BĐT Bunhiacopxki, ta có
\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)
\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)
Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
a/ \(\Delta'=4-\left(m-5\right)< 0\)
\(\Leftrightarrow m>9\)
b/ \(\left\{{}\begin{matrix}3m+1>0\\\Delta=\left(3m+1\right)^2-4\left(3m+1\right)\left(m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{1}{3}\\\left(3m+1\right)\left(-m-15\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{1}{3}\\\left[{}\begin{matrix}m< -15\\m>-\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{3}\)
\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)
\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)
\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)
\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)
\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)
\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)
\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)
\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)
\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)
\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)
A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)
\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)
B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)
\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)
\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)
\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)
\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)
\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)
Để các biểu thức luôn dương:
a/ \(\Delta'=4-\left(m-5\right)< 0\Leftrightarrow9-m< 0\Rightarrow m>9\)
b/ \(\Delta=\left(m+2\right)^2-4\left(8m+1\right)< 0\)
\(\Leftrightarrow m^2-28m< 0\Rightarrow0< m< 28\)
c/ \(\Delta'=4-\left(m-2\right)^2< 0\Leftrightarrow-m^2+4m< 0\Rightarrow\left[{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)
d/ Do hệ số \(a=-1< 0\) nên ko tồn tại m thỏa mãn
e/ Tương tự câu trên, ko tồn tại m thỏa mãn
f/ \(\left\{{}\begin{matrix}m-2>0\\\Delta'=\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\-3m+7< 0\end{matrix}\right.\) \(\Rightarrow m>\frac{7}{3}\)
Chọn A
Tam thức : -4x2+ 5x-1 có a= -4 và ∆ = -7< 0
suy ra -4x2+ 5x-1<0 với mọi x
Do đó h(x) luôn dương khi và chỉ khi
f(x) = -x2+ 4( m+1) x+ 1- 4m2 luôn âm
Vậy với m< -5/8 thì biểu thức h(x) luôn dương.