K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Chọn D.

X không tác dụng với nước Br2, tách lớp với nước và không tác dụng AgNO3/NH3 nên X là este CH3COOC2H5.

Y tách lớp với nước nên loại đáp án chứa Y là fructozơ. Y là anilin C6H5-NH2.

Z tạo kết tủa với AgNO3/NH3 nên loại đáp án chứa Z là a.a NH2-CH2-COOH.

Vậy đáp án thỏa mãn: etyl axetat, anilin, fructozơ, axit aminoaxetic.

26 tháng 12 2014

Bài làm đúng. Câu 41 cần làm rõ ràng.

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

29 tháng 12 2014

Bài này đúng rồi

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

26 tháng 1 2015

Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này: 

Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn  \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:

                                         \(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)

Không biết đúng không có gì sai góp ý nhé!!

a. pt S ở trạng thái dừng:

           \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0

đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:

            U=-\(\frac{Z^2_e}{r}\)

\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:

            \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0

b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)

ta có :  \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)

  \(\rightarrow\)Hằng số Rydberg:

           Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)

  vạch màu lam:n=3 ; n'=4

           Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.10 m-1=109710 cm-1.

c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)

Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))

              =109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.

Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:

                  En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.

21 tháng 1 2015

Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx

Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc: 

P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)

a) x = 4,95 ÷ 5,05 nm

P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02

Tương tự với phần b, c ta tính được kết quả:

b) P= 0.0069

c)P=6,6.10-6


 

Ta có:Xác suất tìm thấy vi hạt là:

P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)

=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)

a)x=4,95\(\div\)5,05nm

Xác suất tìm thấy vi hạt là:

P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019

b)Xác suất tìm thấy vi hạt là:

P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069

c)Xác suất tìm thấy vi hạt là:

P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

27 tháng 8 2015

1 Mol chất có \(6,02.10^{23}\) hạt, nên: 

a) Khối lượng nguyên tử Mg: \(24,31:6,02.10^{23}=\)

b) Thể tích 1 mol nguyên tử: \(24,31:1,738=13,99\) (cm3)

c) Thể tích trung bình của một nguyên tử: \(13,99:6,02.10^{23}=\)

d) Bán kính gần đúng của Mg: \(1,77A^0\)

24 tháng 9 2015

tại sao phần a lại làm như vậy bạn giảu thích kĩ hơn giúp mình đk k

20 tháng 1 2015

a. CM:         [ M^x , M^]  =    ih.M^z  

ta có :

 M^M^y   =    ( - i.h )2.\(\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\)

               =    (  i.h )2.\(\left(y\frac{\partial}{\partial x}-xy\frac{\partial^2}{\partial z^2}\right)\)

M^y.M^x    =    ( - i.h )2.\(\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\)

suy ra :

[ M^x , M^] = M^x M^y  - M^y.M^x  

                 = ( i.h )2.\(\left(y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y}\right)\)

                 = ih.( - i.h)\(\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)\)

                 =  ih.M^z               (dpcm)

b.CM:    [S^x, S^y] = 0

 ta có :

S^2 =   S^2x  +  S^2y  +   S^2z

        = ( h4/4) \(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)  + ( h4/4) \(\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\)  +  ( h4/4)\(\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\)

         =   (3h/4).\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)

mặt khác :

S^2.S^x  =   (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)(h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)

            =    (3h3/8)\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
 
S^x.S^2  = (h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\) (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)
            =(3h3/8).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
suy ra : [S^x, S^y] =  S^2.S^x    -  S^x.S^2   0

 

20 tháng 11 2015

HD:

FexOy + yCO \(\rightarrow\) xFe + yCO2

Trong một phản ứng hóa học, các chất tham gia và các chất sản phẩm phải chứa cùng số nguyên tố tạo ra chất.