K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

a) x 3  + 9 x 2  + 27x + 27.

b) x 3 − 6 5 x 2 + 12 25 x − 8 125 .  

c) 27 m 6 + 27 4 m 4 n + 9 16 m 2 n 2 + n 3 64 .  

d) − 8 27 u 9 − 2 u 6 v 2 − 9 2 u 3 v 4 − 27 8 v 6 .

2 tháng 12 2017

a) \(\frac{x+7}{2x+3}-\frac{5}{2x+3}=\frac{x+7-5}{2x+3}=\frac{x+2}{2x+3}\)

b) \(\frac{m^2}{3\left(m+3\right)}+\frac{2m+3}{m+3}=\frac{m^2}{3\left(m+3\right)}+\frac{\left(2m+3\right).3}{3.\left(m+3\right)}\)

\(=\frac{m^2+6m+9}{3\left(m+3\right)}=\frac{\left(m+3\right)^2}{3\left(m+3\right)}=\frac{m+3}{3}\)

c) \(\frac{x^2-4}{x+5}.\frac{2x+10}{x+2}=\frac{\left(x-2\right)\left(x+2\right).2.\left(x+5\right)}{\left(x+5\right).\left(x+2\right)}=\left(x-2\right).2=2x-4\)

d) \(\frac{3+6y}{y^2-2y+1}:\frac{2y+1}{y-1}=\frac{3\left(2y+1\right)}{\left(y-1\right)^2}.\frac{y-1}{2y+1}=\frac{3}{y-1}\)

2 tháng 12 2017

\(a,\frac{x+7}{2x+3}-\frac{5}{2x+3}\)

\(=\frac{x+7-5}{2x+3}\)

\(=\frac{x+2}{2x+3}\)

\(b,\frac{m^2}{3\left(m+3\right)}+\frac{2m+3}{m+3}\)

\(=\frac{m^2}{3\left(m+3\right)}+\frac{3\left(2m+3\right)}{3\left(m+3\right)}\)

\(=\frac{m^2+6m+9}{3\left(m+3\right)}\)

\(=\frac{\left(m+3\right)^2}{3\left(m+3\right)}\)

\(=\frac{m+3}{3}\)

\(c,\frac{x^2-4}{x+5}.\frac{2x+10}{x+2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{x+5}.\frac{2\left(x+5\right)}{x+2}\)

\(=2\left(x-2\right)\)

d, nghịch đảo lên rồi làm tương tự nha

10 tháng 12 2018

\(a,\left(x-2\right).\left(x-3\right)-\left(x+3\right).\left(x-3\right)\)

\(=\left(x-3\right).\left(x-2-x+3\right)=x-3\)

\(b,\frac{\left(x^2+4x+4\right)}{x+2}-4x+5=\frac{\left(x+2\right)^2}{x+2}-4x+5\)

\(x+2-4x+5=-3x+7\)

10 tháng 12 2018

a) \(\left(x-2\right)\left(x-3\right)-\left(x+3\right)\left(x-3\right)\)

\(=\left(x^2-5x+6\right)-\left(x^2-9\right)\)

\(=x^2-5x+6-x^2+9\)

\(=15-5x\)

b) \(\left(x^2+4x+4\right):\left(x+2\right)-\left(4x-5\right)\)

\(=\left(x+2\right)^2:\left(x+2\right)-\left(4x-5\right)\)

\(=\left(x+2\right)-4x+5\)

\(=x+2-4x+5\)

\(=7-3x\)

9 tháng 7 2018

P/s : Phá ngoặc ra là ok : 

a ) 

\(\left[4x-2\left(x-3\right)\right].\left(-3x\right)\)

\(=\left[4x-2x+6\right]\left(-3x\right)\)

\(=-12x^2+6x^2-18x\)

b ) 

\(3\left[x-3\left(4-2x\right)+8\right]\)

\(=3\left[x-12+6x+8\right]\)

\(=3\left[7x-4\right]\)

\(=21x-12\)

c ) 

\(5\left(3x^2-4y^3\right)+9\left(2x^2-y^3\right)\)

\(=15x^2-20y^3+18x^2-9y^3\)

\(=33x^2-29y^3\)

d ) 

\(3x^2\left(2y-1\right)-2x^2\left(5y-3\right)\)

\(=6x^2y-3x^2-10x^2y+6x^2\)

\(=-4x^2y+3x^2\)

1 tháng 7 2021

Trả lời:

1) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=\left(\sqrt{x}\right)^2-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}-2\)

2) \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)\(=x^2+2x-8-x^2+6x-9=8x-17\)

3)  \(3x\left(2x^3-3x^2+5\right)=6x^4-9x^3+15x\)

3 tháng 12 2019

a) \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x.x}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)

b) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)

\(=\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{1\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(\frac{3x+2-12x+2+10x-8}{\left(3x-2\right)\left(3x+2\right)}=\frac{x-4}{\left(3x-2\right)\left(3+2\right)}\)

3 tháng 12 2019

c) \(\frac{4a^2-3a+5}{a^3-1}-\frac{1-2a}{a^2+a+1}-\frac{6}{a-1}\)

\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{2a-1}{a^2+a+1}-\frac{6}{a-1}\)

\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{6\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{4a^2-3a+5+2a^2-2a-a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{-12}{\left(a-1\right)\left(a^2+a+1\right)}\)

d) \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x-3y}{x\left(x+3y\right)}\)

e) \(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(=\frac{3x-2}{\left(x-1\right)^2}-\frac{6}{\left(x-1\right)\left(x+1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)

\(=\frac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\frac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)}-\frac{\left(3x-2\right)\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}\)

\(=\frac{3x^3+6x^2+3x+2x^2+4x+2-6x^2+6-3x^3+6x^2-3x+2x^2-4x+2}{\left(x-1\right)^2\left(x+1\right)^2}\)

\(=\frac{8x^2+10}{\left(x-1\right)^2\left(x+1\right)^2}\) 

f) \(\frac{5}{a+1}-\frac{10}{a-\left(a^2+1\right)}-\frac{15}{a^3+1}=\frac{5a^2}{a^3+1}+\frac{10}{a^3+1}-\frac{15}{a^3+1}\)

\(=\frac{5a^2+10-15}{a^3+1}=\frac{5a^2-5}{a^3+1}\)

a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)

\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)

\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)

3 tháng 9 2020

\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))

\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)

\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)

3 tháng 9 2020

\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)

Đang đánh máy thì bấm gửi -..-

23 tháng 10 2018

a) (-x2 +6x3 - 26x + 21) : (3-2x)

= -3x2 + 5x + 11/2 ( dư 37/1/2)

b) (2x4 - 13x3 - 15 + 5x + 21x2) : (4x-x2 -3)

= -2x2 + 5x + 5