Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(-\frac{1}{4}+\frac{7}{33}-\frac{5}{3}+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}=\left(-\frac{1}{4}-\frac{5}{3}+\frac{15}{12}\right)+\left(\frac{7}{33}-\frac{6}{11}\right)+\frac{48}{49}\)
\(=\left(\frac{-3}{12}-\frac{20}{12}+\frac{15}{12}\right)+\left(\frac{7}{33}-\frac{18}{33}\right)+\frac{48}{49}\)
\(=-\frac{8}{12}+\frac{-11}{33}+\frac{48}{49}=-\frac{2}{3}-\frac{1}{3}+\frac{48}{49}=-\frac{3}{3}+\frac{48}{49}=-1+\frac{48}{49}=-\frac{49}{49}+\frac{48}{49}=-\frac{1}{49}\)
Nhận lời mời của bn Minh Anh
Ta có: \(48\cdot\left(76-52\right)+52\cdot\left(76-48\right)\)
\(=48\cdot76-48\cdot52+52\cdot76-52\cdot48\)
\(=\left(48\cdot76+52\cdot76\right)-\left(48\cdot52+52\cdot48\right)\)
\(=76\cdot100-4992\)
\(=7600-4992\)
\(=2608\) chắc vậy hợp lý nhất rồi nhỉ:)
-(127+38-21)-(121-27+48)+50
=-127-38+21-121+27-48+50
=(-127+27)-(38+48)+(21-121)+50
=-100-86-100+50
=-(100+100+86)+50
=-286+50
=-236
-39+(193-127+96)-(193+196-127)
=-39+193-127+96-193-196+127
=-39+(193-193)-(127+127)+(96-196)
=-39-100
=-139
\(Q=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{47}{3}+\dfrac{48}{2}+\dfrac{49}{1}\\ =\dfrac{1}{49}+1+\dfrac{2}{48}+1+\dfrac{3}{47}+1+...+\dfrac{47}{3}+1+\dfrac{48}{2}+1+1\\ =\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{3}+\dfrac{50}{2}+\dfrac{50}{50}\\ =50\cdot\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+...+\dfrac{1}{3}+\dfrac{1}{2}\right)\\ =50\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{P}{Q}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}}{50\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
\(=45-\left(3^2+2^4\right)=45-\left(9+16\right)=45-25=20\)
b)\(=50+\left(30-2\left(14-3\right)\right)=50+\left(30-22\right)=50+8=58\)
p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)
=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)
=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)
=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)
p=50*S
\(\frac{S}{\text{p}}=\frac{1}{50}\)
a, -5280
b, 7600
Sơ đồ con đường
Lời giải chi tiết
Áp dụng tính chất phân phối của phép nhân phân phối đối với phép cộng