Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bị chia là a, thương là q và số dư là r.
Ta có: \(a=q\times27+r\left(24< r< 27\right)\)
Vì tổng của số bị chia và thương bằng 361 nên ta có: \(a+q=361\)(*)
Thay \(a=q\times27+r\) vào biểu thức (*), ta được:
\(q\times27+r+q=361\)
\(28q+r=361\)
\(r=361-28q\)
Mà \(24< r< 27\)nên \(24< 361-28q< 27\) hay \(334< 28q< 337\)
Suy ra
TH1: \(28q=335\)
\(q=335\div28\)
\(q=11\)(dư 27)
TH2: \(28q=336\)
\(q=336\div28\)
\(q=12\)
Khi đó: \(a=349\)
Vậy số bị chia là \(349\) và thương là \(12\)
= -4/3 - 17/6 . 6/11 + 3 : 1/20
= - 4/3 - 17/11 + 60
= 1885/33
Mình làm nhầm chỗ 29.39.23.3.5 phải bằng 212.310.5. Thông cảm nha bạn
\(\frac{4^6.9^5-6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{4}{5}\)
Ta có :
\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)
\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)
\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)
\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)
\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)
Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra :
\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\frac{A}{100}=98-\frac{49}{100}\)
\(\frac{A}{100}=\frac{9751}{100}\)
\(A=\frac{9751}{100}.100\)
\(A=9751\)
Vậy \(A=9751\)
Chúc bạn học tốt ~
\(A=\frac{24.47-23}{24+27-23}.\frac{9-\frac{9}{7}+\frac{9}{11}+\frac{9}{1001}-\frac{9}{11}}{\frac{2}{1001}-\frac{2}{13}-\frac{2}{7}+\frac{2}{11}+2}\)
co sai de ko bn
a. \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-4}{9}+\frac{5}{6}\right):\frac{7}{12}\)
\(=1.\frac{7}{12}:\frac{7}{12}\)
\(=1\)
b.
\(\frac{5}{9}.\frac{8}{11}+\frac{5}{9}.\frac{9}{11}-\frac{5}{9}.\frac{6}{11}\)
\(=\frac{5}{9}.\left(\frac{8}{11}+\frac{9}{11}-\frac{6}{11}\right)\)
\(=\frac{5}{9}.1\)
\(=\frac{5}{9}\)
Tk mk nha!
b) \(=\frac{5}{9}.\left(\frac{8}{11}+\frac{9}{11}-\frac{6}{11}\right)\)
\(=\frac{5}{9}.1\)
\(=\frac{5}{9}\)