Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)
Đang đánh máy thì bấm gửi -..-
\(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)( ĐKXĐ : \(x\ne\pm2\))
\(=\frac{5\left(x+2\right)}{2\left(2x-4\right)}\cdot\frac{-\left(2x-4\right)}{x+2}\)
\(=\frac{-5\left(x+2\right)\left(2x-4\right)}{2\left(2x-4\right)\left(x+2\right)}\)
\(=-\frac{5}{2}\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}\)( ĐKXĐ : \(x\ne-5;x\ne6\))
\(=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\frac{3}{-\left(x-6\right)}\)
\(=\frac{3\left(x-6\right)\left(x+6\right)}{-2\left(x+5\right)\left(x-6\right)}\)
\(=\frac{3\left(x+6\right)}{-2\left(x+5\right)}=\frac{3x+18}{-2x-10}=-\frac{3x+18}{2x+10}\)
a)
Điều kiện : \(\hept{\begin{cases}4x-8\ne0\\x+2\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
\(=\frac{5\left(x+2\right)}{-2\left(4-2x\right)}\cdot\frac{4-2x}{x+2}\)
\(=\frac{-5}{2}\)
b)
Điều kiện : \(\hept{\begin{cases}2x+10\ne0\\6-x\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ne-5\\x\ne6\end{cases}}\)
\(=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}\)
\(=\frac{-6\left(x+6\right)\cdot3}{2x+10}\)
\(=\frac{-9\left(x+6\right)}{x+5}\)
\(=\frac{-9x-54}{x+5}\)
\(=\frac{-9\left(x+5\right)-9}{x+5}\)
\(=-9-\frac{9}{x+5}\)
\(A=x^5+2x^4+4x^3+8x^2+16x-2x^4-4x^3-8x^2-16x-32\)
\(=x^5-32\)(1)
Thay x=3 vào (1) ta được:
\(A=3^5-32=243-32=211\)
Bài làm:
đk: \(x\ne-3;x\ne1\)
Ta có: \(\frac{x^2+6x+9}{1-x}\cdot\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}\)
\(=\frac{\left(x+3\right)^2}{-\left(x-1\right)}\cdot\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}\)
\(=\frac{-\left(x-1\right)^2}{2\left(x+3\right)}\)
\(=-\frac{x^2-2x+1}{2x+6}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne-3\\x\ne1\end{cases}}\)
\(\frac{x^2+6x+9}{1-x}.\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}=\frac{-\left(x+3\right)^2}{x-1}.\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}=\frac{-\left(x-1\right)^2}{2\left(x+3\right)}\)
Bài làm:
Ta có: \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)
\(=\frac{4-x^2}{x-3}+\frac{2x^2-2x}{x-3}+\frac{5-4x}{x-3}\)
\(=\frac{x^2-6x+9}{x-3}\)
\(=\frac{\left(x-3\right)^2}{\left(x-3\right)}=x-3\) \(\left(x\ne3\right)\)
Vậy (6x3 – 7x2 – 16x + 12) : (2x + 3) = 3x2 – 8x + 4